YingDuan et al. / Chinese Journal of Catalysis 37 (2016) 1837–1840
1839
Scheme 6. Mechanism of the cascade reaction.
were tolerated to afford a large scope of N‐aryl indoles with
good to excellent yield. The reaction was shown to be the selec‐
tive N‐arylation first and then heteroannulation.
Scheme 3. Synthesis of N‐arylindole (4b–4h). Reaction conditions: 1
(0.2 mmol), 2 (0.4 mmol), Cu(OCOC8H17)2 (10 mol%), DIPEA (0.4 mmol)
solvent (2.0 mL), 1 h.
Acknowledgments
The authors thank Prof. Yonggui Zhou and Dr. Wenxue
Huang for chemical reagents and helpful discussions.
References
[1] V. V. Zhdankin, P. J. Stang, Chem. Rev., 2008, 108, 5299–5358.
[2] E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed., 2009, 48,
9052–9070.
[3] Z. C. Xiao, C. F. Xia, Chin. J. Org. Chem., 2013, 33, 2119–2130.
[4] S. G. Modha, M. F. Greaney, J. Am. Chem. Soc., 2015, 137,
1416–1419.
[5] D. Holt, M. J. Gaunt, Angew. Chem. Int. Ed., 2015, 54, 7857–7861.
[6] E. Cahard, H. P. J. Male, M. Tissot, M. J. Gaunt, J. Am. Chem. Soc.,
2015, 137, 7986–7989.
Scheme 4. Synthesis of N‐arylindole (4i).
To probe the reaction mechanism, controlled experiments
were performed. First, the reaction was operated with omitting
of the diaryliodonium triflate, and the material did not react.
When 5 was subjected to the reaction under the standard reac‐
tion conditions, the desired product 3a was obtained in 94%
yield (Scheme 5).
[7] F. Z. Zhang, S. Das, A. J. Walkinshaw, A. Casitas, M. Taylor, M. G.
Suero, M. J. Gaunt, J. Am. Chem. Soc., 2014, 136, 8851–8854.
[8] Y. Yang, J. W. Han, X. S. Wu, S. Mao, J. J. Yu, L. M. Wang, Synlett,
2014, 25, 1419–1424.
[9] Y. Wang, C. Chen, J. Peng, M. Li, Angew. Chem. Int. Ed., 2013, 52,
5323–5327.
[10] A. J. Walkinshaw, W. S. Xu, M. G. Suero, M. J. Gaunt, J. Am. Chem.
Soc., 2013, 135, 12532–12535.
[11] Q. Y. Toh, A. McNally, S. Vera, N. Erdmann, M. J. Gaunt, J. Am. Chem.
Soc., 2013, 135, 3772–3775.
[12] M. G. Suero, E. D. Bayle, B. S. L. Collins, M. J. Gaunt, J. Am. Chem. Soc.,
2013, 135, 5332–5335.
[13] B. S. L. Collins, M. G. Suero, M. J. Gaunt, Angew. Chem. Int. Ed., 2013,
52, 5799–5802.
[14] W. S. Guo, S. L. Li, L. Tang, M. Li, L. R. Wen, C. Chen, Org. Lett., 2015,
17, 1232–1235.
According to these results, the cascade reaction can be de‐
scribed as follows (Scheme 6). First, the Cu catalyst and dia‐
ryliodonium salt generated Cu(III)–aryl, which was demon‐
strated to be a reactive intermediate. Then this reactive inter‐
mediate, which served as an aromatic electrophile, reacted with
2‐alkynylaniline to give the N‐arylation product (5) with the
assistance of the base. Finally, heteroannulation took place with
the help of the Cu catalyst to afford N‐arylindole (3).
In conclusion, we developed an efficient Cu catalyzed selec‐
tive arylation/annulation cascade reaction of 2‐alkynylanilines
with diaryliodonium salts. The novelty of this strategy lies in
giving excellent selectivity of N‐arylation as opposed to
C‐arylation. Many functional group and diaryliodonium salts
[15] L. Chan, A. McNally, Q. Y. Toh, A. Mendoza, M. J. Gaunt, Chem. Sci.,
2015, 6, 1277–1281.
[16] B. Bhattarai, J. H. Tay, P. Nagorny, Chem. Commun., 2015, 51,
5398–5401.
[17] S. Mao, F. L. Guo, J. Li, X. Geng, J. J. Yu, J. W. Han, L. M. Wang, Synlett,
2013, 24, 1959–1962.
[18] X. Geng, S. Mao, L. S. Chen, J. J. Yu, J. W. Han, J. L. Hua, L. M. Wang,
Tetrahedron Lett., 2014, 55, 3856–3859.
[19] Y. Wang, C. Chen, S. Zhang, Z. B. Lou, X. Su, L. R. Wen, M. Li, Org.
Lett., 2013, 15, 4794–4797.
Scheme 5. Control experiments study.