Angewandte
Chemie
resulting solution was evaporated under reduced pressure at 458C to
produce a thin film that was dried in vacuo for 2 h. The lipid film was
hydrated with a solution (1 mL) of 10 mm sodium phosphate (pH 6.4)
[7] S. Otto, M. Osifchin, S. L. Regen, J. Am. Chem. Soc. 1999, 121,
7276.
[8] P. H. Schlesinger, R. Ferdani, J. Liu, J. Pajewska, R. Pajewki, M.
Saito, H. Shabany, G. W. Gokel, J. Am. Chem. Soc. 2002, 124,
1848.
[9] For a lead to the extensive calixarene literature, see: V. Böhmer,
Angew. Chem. 1995, 107, 785; Angew. Chem. Int. Ed. Engl. 1995,
containing 100 mm NaNO and 1 mm lucigenin. After 5 freeze/thaw
3
cycles (thawing and then warming to 458C) the liposomes were
extruded through a 100-nm polycarbonate membrane 21 times
between 45–558C. The liposome solution was passed through a
sephadex(G-25) column to remove e xc ess dye. The isolated lip-
osomes were diluted in 10 mm sodium phosphate (pH 6.4, 100 mm
34, 713.
[
10] Transmembrane cation transporters from calix[4]arenes or
resorcin[4]arenes: Y. Tanaka, Y. Kobuke, M. Sokabe, Angew.
Chem. 1995, 107, 717; Angew. Chem. Int. Ed. Engl. 1995, 34, 693;
J. de Mendoza, F. Cuevas, P. Prados, E. S. Meadows, G. W.
Gokel, Angew. Chem. 1998, 110, 1650; Angew. Chem. Int. Ed.
NaNO ) to give a concentration of 11 mm in DPPC, assuming 100%
3
retention of lipid during the gel filtration process.
Chloride transport assay: In a typical experiment, the stock
DPPC liposomes (0.1 mL) were diluted into 10 mm sodium phosphate
(
2 mL, pH 6.4, 100 mm NaNO ) to give a solution that was 0.5 mm in
3
1
2
998, 37, 1534; N. Yoshino, A. Satake, Y. Kobuke, Angew. Chem.
001, 113, 471; Angew. Chem. Int. Ed. 2001, 40, 457; A. J. Wright,
lipid. A solution of calixarene 1 or 2 in DMSO was added to this
solution to give a 2:100 ligand:lipid ratio. The sample was incubated
for 10 minutes at either 438C or 378C. 4.0m NaCl (20 mL) was added
to the cuvette containing the DPPC/calixarene mixture through an
S. E. Matthews, W. Fischer, P. D. Beer, Chem. Eur. J. 2001, 7,
474; M. Mauleucci, F. De Riccardis, B. Botta, A. Casapullo, E.
Cressina, E. Fregonese, P. Tecilla, I. Izzo, Chem. Commun. 2005,
354.
3
À
injection port to give a final extravesicular Cl concentration of
1
2
5 mm. The fluorescence of the intravesicular lucigenin was moni-
[
11] V. Sidorov, F. W. Kotch, G. Abdrakhmanova, R. Mizani, J. C.
Fettinger, J. T. Davis, J. Am. Chem. Soc. 2002, 124, 2267.
12] V. Sidorov, F. W. Kotch, Y. Lam, J. L. Kuebler, J. T. Davis, J. Am.
Chem. Soc. 2003, 125, 2840.
13] K. Iwamoto, S. Shinkai, J. Org. Chem. 1992, 57, 7066.
14] For reviews on calixarene–anion receptors, see: P. Lhotak, Top.
Curr. Chem. 2005, 255, 65; S. E. Matthews, P. D. Beer, Supramol.
Chem. 2005, 17, 411; P. D. Beer, P. A. Gale, Angew. Chem. 2001,
tored at an excitation wavelength of 372 nm and emission wavelength
of 504 nm for 500 s. After 470 s, 10% triton-X detergent (0.04 mL)
was added to destroy the liposomes and to determine the maximal
[
À
fluorescence quenching of lucigenin by Cl ions. Experiments at two
[
[
different temperatures (378C and 438C) were done in triplicate.
Lucigenin fluorescence was converted into chloride concentration by
using the Stern–Volmer constant determined under the assay
conditions. To measure the Stern–Volmer constant, liposomes
prepared as above were lysed immediately with triton-X. 4.0m
NaCl (5 mL) was titrated in every 30 s through the injection port.
113, 502; Angew. Chem. Int. Ed. 2001, 40, 486.
[
15] See the Supporting Information for the NMR titration data.
À1
À
These K values (1, 28.7 Æ 17 and 2, 31.7 Æ 6m ) for Cl binding
The slope of a plot of f /f versus chloride concentration gave the
a
0
by secondary amides in 1 and 2 are consistent with values for N-
Stern–Volmer constant for lucigenin.
methylacetamide binding tetrabutylammonium chloride
(
TBACl) in CDCl : F. Werner, H.-J. Schneider, Helv. Chim.
Received: December 17, 2005
Published online: April 11, 2006
3
Acta 2000, 83, 465.
[
16] B. A. McNally, A. V. Koulov, B. D. Smith, J. B. Joos, A. P. Davis,
Chem. Commun. 2005, 1087.
[17] For examples where concentration dependence indicates mem-
brane-active aggregates with ion-channel characteristics, see:
T. M. Fyles, D. Loock, X. Zhou, J. Am. Chem. Soc. 1998, 120,
Keywords: calixarenes · ion channels · ion transport ·
.
self-assembly · supramolecular chemistry
2
997; A. F. DiGiorgio, S. Otto, P. Bandyopadhyay, S. L. Regen, J.
Am. Chem. Soc. 2000, 122, 11029.
18] Crystal data for 1 from acetonitrile: C H N O ·C H N, M =
[
[
[
[
1] For reviews of synthetic ion channels, see: S. Matile, A. Som, N.
Sorde, Tetrahedron 2004, 60, 6405; U. Koert, L. Al-Momani, J. R.
Pfeeifer, Synthesis 2004, 1129.
[
5
2
68
4
8
2
3
r
3
9
18.16, dimensions 0.38 0.32 0.13 mm , triclinic, space group
¯
P1, a = 12.9335(4), b = 16.6625(5), c = 25.6605(8) , V=
2] Crystal structures provided insight into the function of the
3
À3
À1
5107.6(3) , Z = 4, 1
= 1.1194 mgm , MoKa = 0.080 mm .
calcd
+
K ion channel: R. MacKinnon, Angew. Chem. 2004, 116, 4363;
Data were collected on a Bruker SMART 1000 CCD diffrac-
tometer at 173(2) K. The structure was refined to convergence
Angew. Chem. Int. Ed. 2004, 43, 4264.
3] Solid-state structures also helped rationalize the function of a
synthetic ion channel: J. D. Hartgerink, J. R. Granja, R. A.
Milligan, M. R. Ghadiri, J. Am. Chem. Soc. 1996, 118, 43.
4] Examples of stimuli-responsive transmembrane transporters:
T. M. Fyles, D. Lock, X. Zhou, J. Am. Chem. Soc. 1998, 120, 2997;
C. Goto, M. Yamamura, A. Satake, Y. Kobuke, J. Am. Chem.
Soc. 2001, 123, 12152; V. Gorteau, F. Perret, G. Bollot, J.
Mareda, A. N. Lazar, A. W. Coleman, D.-H. Tran, N. Sakai, S.
Matile, J. Am. Chem. Soc. 2004, 126, 13592; W. H. Chen, S. L.
Regen, J. Am. Chem. Soc. 2005, 127, 6538.
5] P. A. Gale, M. E. Light, B. McNally, K. Navakhum, K. I.
Sliwinski, B. D. Smith, Chem. Commun. 2005, 3773; J. L. Sessler,
L. R. Eller, W.-S. Cho, S. Nicolaou, A. Aguilar, J. T. Lee, V. M.
Lynch, D.J Magda, Angew. Chem. 2005, 117, 6143; Angew.
Chem. Int. Ed. 2005, 44, 5989; J. L. Seganish; J. T. Davis, Chem.
Commun. 2005, 5781.
2
[
1
D/s ꢀ 0.001] with R(F) = 5.55%, wR(F ) = 17.73%, GOF =
.095 for all 18,493 reflections. CCDC-293015 contains the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
graphic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
19] Data for 2 from acetone/CH Cl : C H N O ·0.77CH Cl ·
[
2
2
68 100
4
8
2
2
3
C H O, M = 1180.27, dimensions 0.05 0.08 0.380 mm , tri-
3
6
r
¯
clinic, space group P1, a = 13.798(3), b = 14.308(3), c =
3
À3
1
8.487(4) , V= 3438.1(12) , Z = 2, 1calcd = 1.140 mgm
MoKa = 0.131 mm . Data collected were at 223(2) K. The
,
À1
[
structure was refined to convergence [D/s ꢀ 0.001] with R(F) =
2
5
.93%, wR(F ) = 13.43%, GOF = 1.034 for all 9876 unique
reflections. CCDC-293016 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[
6] A. V. Koulov, T. N. Lambert, R. Shukla, M. Jain, J. M. Bood,
B. D. Smith, H. Y. Li, D. N. Sheppard, J. B. Joos, J. P. Clare, A. P.
Davis, Angew. Chem. 2003, 115, 5081; Angew. Chem. Int. Ed.
[20] para Substitution typically has a minor influence on calix
conformation: C. D. Gutsche, L. J. Bauer, J. Am. Chem. Soc.
1985, 107, 6052; P. D. J. Grootenhuis, P. A. Kollman, L. C.
2003, 42, 4931.
Angew. Chem. Int. Ed. 2006, 45, 3334 –3338
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3337