Beilstein J. Org. Chem. 2013, 9, 1235–1242.
fied Pictet–Spengler substrates reacted equally well with elec-
tron-donating and electron-withdrawing aldehydes. TCT proved
effective in catalyzing the 6-endo cyclization of aldehydes such
as salicylaldehyde and 4-dimethylaminobenzaldehyde. These
aldehydes failed to produce the cyclized product in desired
yield under conventional Brønsted acid catalysis and often
produced the oxidized products under harsher reaction condi-
tions. TCT under an inert atmosphere allowed for a clean reac-
tion with a broad substrate scope and application. We demon-
strated application of this methodology for the synthesis of
tetrahydro-β-carbolines 3 and indolo[1,2-a]quinoxalines 8.
These scaffolds are present in numerous biologically active
compounds. Nevertheless, TCT is inexpensive and readily
available. Therefore, this methodology can be easily employed
in the synthesis of a spectrum of pharmacologically active com-
pounds on multigram to industrial scales.
Supporting Information
Supporting Information File 1
Analytical data and copies of 1H and 13C NMR of 3a, 3c,
3h and 8d.
Acknowledgements
The authors thank the Open Source Drug Discovery (OSDD)
program of CSIR, New Delhi for funding as well as the Depart-
ment of Pharmaceuticals, Ministry of Chemicals and Fertilizers,
Government of India for granting a fellowship to A.S. and M.S.
We are grateful to Dr. P. K. Shukla, Project Director NIPER-
RaeBareli, and Dr. B. Kundu, Dean, NIPER-RaeBareli for their
support and motivation.
Experimental
References
A typical experimental procedure: Cyanuric chloride
(10 mol %) was added to the mixture of tryptamine (1) or
arylamine substrate 4 (1 mmol) and aldehyde 2 (1 mmol) in
DMSO at rt under a nitrogen atmosphere. The resultant mixture
was warmed at 100 °C and stirred for 8 h. The reaction mixture
was poured on the bed of crushed ice to obtain the crude. The
solid so obtained was filtered and washed with chilled water
and 10% EtOAc/hexane solution to remove water-soluble side
products and excess aldehydes. Wherever needed the crude was
further purified either by recrystallization in EtOH or by flash
chromatography.
1. Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797–1842.
And references therein.
2. Nielsen, T. E.; Diness, F.; Meldal, M. Curr. Opin. Drug Discovery Dev.
2003, 6, 801–814.
3. Youn, S. W. Org. Prep. Proced. Int. 2006, 38, 505–591.
4. Royer, J.; Bonin, M.; Micouin, L. Chem. Rev. 2004, 104, 2311–2352.
5. Larghi, E. L.; Amongero, M.; Bracca, A. B. J.; Kaufman, T. S.
6. Kaufman, T. S. Synthesis of opically-active isoquinoline and
indolealkaloids employing the Pictet–Spengler condensation with
removabiechiral auxiliaries bound to nitrogen. In New Methods in the
Asymmetric Synthesis of Nitrogen Heterocycles; Vicario, J. L.;
Badía, D.; Carrillo, L., Eds.; Research SignPost: Trivandrum, Kerala,
India, 2005; pp 99 ff.
1-(4-Methylphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-
b]indole (3a): Yield 92%; pale-yellow solid; mp 138–139 °C;
1H NMR (CDCl3, 300 MHz) δ 7.94 (br s, 1H), 7.60–7.57 (m,
1H), 7.18–7.13 (m, 7H), 5.10 (s, 1H), 3.39–3.32 (m, 1H),
3.17–3.08 (m, 1H), 2.99–2.84 (m, 2H), 2.39 (s, 3H); 13C NMR
(CDCl3, 75.5 MHz) δ 138.91, 138.05, 136.00, 134.81, 129.57,
128.57, 127.50, 121.73, 119.42, 118.29, 110.97, 110.15, 57.85,
42.86, 22.63, 21.29, IR (KBr): 3426, 3309, 2924, 2852, 1595
cm–1; MS (ES+) m/z: 263.2 [M + H]+.
7. Whaley, W. M.; Govindachari, T. R. Org. React. 1951, 6, 151–190.
8. Abramovitch, R. A.; Spenser, I. D. Adv. Heterocycl. Chem. 1964, 3,
9. Stuart, K.; Woo-Ming, R. Heterocycles 1975, 3, 223–264.
10.Kowalski, P.; Bojarski, A. J.; Mokrosz, J. L. Tetrahedron 1995, 51,
11.Kundu, B.; Agarwal, P. K.; Sharma, S. K.; Sawant, D.;
Mandadapu, A. K.; Saifuddin, M.; Gupta, S. Curr. Org. Synth. 2012, 9,
N-(4-Indolo[1,2-a]quinoxalin-6-ylphenyl)dimethylamine
(8d): yield 85%, yellow solid, mp 149–151 °C; 1H NMR
(CDCl3, 300 MHz) δ 8.52 (d, J = 8.2 Hz, 1H), 8.07 (dd, J = 1.2,
7.9 Hz, 1H), 8.03 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 7.8 Hz, 1H),
7.75 (d, J = 8.9 Hz, 1H), 7.61–7.54 (m, 2H), 7.45 (t, J = 7.4 Hz,
1H), 7.36 (s, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 8.8 Hz,
1H), 3.10 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 151.80,
136.67, 133.02, 131.96, 130.11, 129.97, 129.87, 129.36, 129.33,
127.42, 126.10, 124.02, 122.65, 122.44, 114.59, 114.55, 111.85,
110.98, 102.37, 40.52; IR (KBr): 3020, 2924, 1599 cm–1; MS
(ES+) m/z: 338.3 [M + H]+.
And references therein.
12.Agarwal, P. K.; Sawant, D.; Sharma, S.; Kundu, B. Eur. J. Org. Chem.
13.Sharma, S.; Saha, B.; Sawant, D.; Kundu, B. J. Comb. Chem. 2007, 9,
14.Che, X.; Zheng, L.; Dang, Q.; Bai, X. J. Org. Chem. 2008, 73,
15.Zheng, L.; Xiang, J.; Dang, Q.; Guo, S.; Bai, X. J. Comb. Chem. 2005,
1240