V. N. Khrustalev et al.
FULL PAPER
(
7
2
365.87): calcd. C 26.26, H 5.51, N 7.66; found C 26.05, H 5.41, N
mechanisms of chemical reactions and processes”. We thank Dr.
1
.40. H NMR (CD
.86 (m, 4 H, CH N), 3.80–3.85 (m, 4 H, CH
Cl ): δ = 46.78, 46.87 (two s, Me
N), 58.03 (3JSn,C = 24.5 Hz,
N), 63.02 ( JSn,C = 57.5 Hz, CH O) ppm.
2
Cl
2
): δ = 2.73, 2.74 (two s, 12 H, Me); 2.83– M. G. Kuznetsova for performing the multinuclear NMR measure-
O) ppm. 13C NMR ments.
2
2
(CD
2
2
2
2
CH
2
2
[
MeSn(OCH
CH NMe )] (6.65 g, 23.33 mmol) in Et
wise to a stirred solution of [MeSnCl
Et O (30 mL). After two hours of stirring an abundant white pre-
2
CH
2
NMe
2
)
2
Cl] (3): A solution of [Et
O (20 mL) was added drop-
] (2.80 g, 11.66 mmol) in
3
Sn(OCH
2
-
[1] Ch. Elschenbroich, A. Salzer, Organometallics: A Concise In-
troduction, Wiley-VCH, Weinheim, New York, Basel, Cam-
bridge, 1992.
2
2
2
3
[
2] a) R. A. Varga, C. Silvestru, C. Deleanu, Appl. Organomet.
Chem. 2005, 19, 153–160; b) S. H. L. Thoonen, H. van Hoek,
E. de Wolf, M. Lutz, A. L. Spek, B.-J. Deelman, G. van Koten,
J. Organomet. Chem. 2006, 691, 1544–1553.
2
cipitate had formed. This was filtered, washed with hexane, and
dried in vacuo. The yield was 2.49 g (61.8%). M.p. 139–140 °C.
C
3
=
4
9
H
23ClN
2 2
O Sn (345.45): calcd. C 31.29, H 6.71, N 8.11; found C
[
3] a) N. N. Zemlyansky, I. V. Borisova, M. G. Kuznetsova, V. N.
Khrustalev, Yu. A. Ustynyuk, M. S. Nechaev, V. V. Lunin, J.
Barrau, G. Rima, Organometallics 2003, 22, 1675–1681; b)
N. N. Zemlyansky, I. V. Borisova, V. N. Khrustalev, M. Yu.
Antipin, Yu. A. Ustynyuk, M. S. Nechaev, V. V. Lunin, Orga-
nometallics 2003, 22, 5441–5446; c) V. N. Khrustalev, M. Yu.
Antipin, N. N. Zemlyansky, I. V. Borisova, Yu. A. Ustynyuk,
V. V. Lunin, J. Barrau, G. Rima, J. Organomet. Chem. 2004,
1
2
1.05, H 6.80, N 7.97. H NMR (CD
2
Cl
99.0/103.6 Hz, 3 H, MeSn), 2.57 (br. s, 12 H, Me
H, CH N), 3. 78 (br. m, 4 H, CH
O) ppm. 13C NMR (CD
N), 58.74 (br., CH N), 63.61 (br.,
2
): δ = 0.71 (br. s, JSn,H
N), 2.70 (br.,
Cl ):
2
2
2
2
2
δ = 10.80 (MeSn), 46.27 (Me
CH
2
2
2
O) ppm.
[EtSn(OCH
2
CH
)] (4.47 g, 15.21 mmol) in thf (25 mL) was added drop-
(4.04 g, 7.64 mmol) in Et
30 mL). The mixture was stirred for 2 h and stored overnight. The
2 2 2 3 2
NMe ) I] (4): A solution of [Et Sn(OCH -
689, 478–483; d) V. N. Khrustalev, I. A. Portnyagin, N. N. Zem-
CH
2
NMe
2
lyansky, I. V. Borisova, Yu. A. Ustynyuk, M. Yu. Antipin, J.
Organomet. Chem. 2005, 690, 1056–1062; e) V. N. Khrustalev,
I. A. Portnyagin, N. N. Zemlyansky, I. V. Borisova, M. S. Ne-
chaev, Yu. A. Ustynyuk, M. Yu. Antipin, V. V. Lunin, J. Or-
ganomet. Chem. 2005, 690, 1172–1177; f) V. N. Khrustalev,
I. A. Portnyagin, I. V. Borisova, N. N. Zemlyansky, Yu. A. Us-
tynyuk, M. Yu. Antipin, M. S. Nechaev, Organometallics 2006,
25, 2501–2504.
wise to a stirred solution of EtSnI
(
solvent was removed in vacuo to about one sixth of the initial vol-
ume, then 50 mL of hexane was added to give a white crystalline
precipitate. This was filtered under argon, washed with hexane, and
dried in vacuo. The yield was 1.90 g (56%). M.p. 108–109 °C.
3
2
O
10 2 2
C H25IN O Sn (450.93): calcd. C 26.64, H 5.59, N 6.21; found C
1
[4] a) F. Caruso, D. Leonesi, F. Marchetti, E. Rivarola, M. Rossi,
V. Tomov, C. Pettinari, J. Organomet. Chem. 1996, 519, 29–44;
b) J. E. J. Graudo, N. L. Speziali, A. Abras, M. Horner,
C. A. L. Filgueiras, Polyhedron 1999, 18, 2483–2489; c) E. R. T.
Tiekink, Main Group Met. Chem. 2000, 23, 551–552; d) D.
Cunningham, E. M. Landers, P. McArdle, N. N. Chonchubh-
air, J. Organomet. Chem. 2000, 612, 53–60; e) R. Garcia-Zarra-
cino, J. Ramos-Quinones, H. Hopfl, J. Organomet. Chem. 2002,
664, 188–200; f) M. M. Amini, A. Azadmeher, M. Yousefi, S.
Foladi, S. W. Ng, Acta Crystallogr. Sect. E 2002, 58, m58–m60;
g) D. Dakternieks, A. Duthie, D. R. Smyth, C. P. D. Stapleton,
E. R. T. Tiekink, Organometallics 2003, 22, 4599–4603; h)
M. H. Chisholm, E. E. Delbridge, J. C. Gallucci, New J. Chem.
2004, 28, 145–152.
2
6.35, H 5.78, N 6.15. H NMR (CD
CH CH Sn), 1.73 (m, 2 H, CH CH Sn), 2.63 (br. s, 12 H, Me
.72 (br., 4 H, CH N), 3.80 (br. m, 4 H, CH
CD Cl ): δ = 10.49 (br., CH CH Sn), 13.39 ( JSn,C = 64.4 Hz,
CH Sn), 46.82 (br., Me N), 58.66 (CH N), 63.32 (CH O) ppm.
2
Cl
2
): δ = 1.20 (m, 3 H,
N),
O) ppm. C NMR
3
2
3
2
2
13
2
(
CH
2
2
2
2
2
3
2
3
2
2
2
2
X-ray Crystal Structure Determination: Data were collected on a
Bruker three-circle diffractometer equipped with a SMART 1000
CCD detector and corrected for absorption using the SADABS
program.
and SAINTPlus
[
12]
[13]
Data reduction was performed with the SMART
[
14]
programs (see Table 5 for details). The struc-
tures were solved by direct methods and refined by full-matrix le-
ast-squares on F2 with anisotropic thermal parameters for non-
[
5] a) E. G. Martinez, A. S. Gonzalez, J. S. Casas, J. Sordo, U. Ca-
hydrogen atoms. The value of the Flack parameter for complex 6,
0
sellato, R. Graziani, U. Russo, J. Organomet. Chem. 1993, 463,
.363(18), indicates that the absolute structure in this case cannot
91–96; b) F. Caruso, M. Giomini, A. M. Giuliani, E. Rivarola,
be determined unambiguously due to the specific centrosymmetric
arrangement of the heavy tin atoms as well as most of the substitu-
ents (see above). All calculations were carried out using the
SHELXTL program (PC Version 5.10).[
CCDC-607745 through -607748 contain the supplementary crystal-
lographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
J. Organomet. Chem. 1994, 466, 69–75; c) M. J. Cox, S. Rai-
none, G. Siasios, E. R. T. Tiekink, L. K. Webster, Main Group
Met. Chem. 1995, 18, 93–99; d) J. S. Casas, E. E. Castellano,
F. J. G. Barros, A. Sanchez, A. S. Gonzalez, J. Sordo, J. Zuker-
man-Schpector, J. Organomet. Chem. 1996, 519, 209–216; e)
P. A. Boo, M. D. Couce, E. Freijanes, J. S. Casas, A. Casti-
neiras, A. S. Gonzalez, J. Sordo, U. Russo, J. Organomet. Chem.
15]
1
996, 506, 253–258; f) S.-G. Reoh, S.-H. Ang, S.-B. Teo, H.-K.
Fun, K.-L. Khew, C.-W. Ong, J. Chem. Soc., Dalton Trans.
997, 465–468; g) P. A. Boo, J. S. Casas, E. E. Castellano,
1
Supporting Information (see also the footnote on the first page of
this article): Details of the quantum-chemical calculations.
M. D. Couce, E. Freijanes, A. Furlani, U. Russo, V. Scarcia, J.
Sordo, M. Varela, Appl. Organomet. Chem. 2001, 15, 75–81.
6] R. Colton, D. Dakternieks, Inorg. Chim. Acta 1988, 143, 151–
[
159.
[
[
7] D. Dakternieks, H. Zhu, Organometallics 1992, 11, 3820–3825.
8] a) I. P. Gol’dstein, N. N. Zemlyansky, O. P. Shamagina, E. N.
Gur’yanova, E. M. Panov, N. A. Slovokhotova, K. A. Ko-
cheshkov, Dokl. Akad. Nauk SSSR 1965, 163, 880–883; b)
N. N. Zemlyansky, I. P. Gol’dstein, E. N. GurЈyanova, O. P.
Syutkina, E. M. Panov, N. A. Slovokhotova, K. A. Kochesh-
kov, Izv. Akad. Nauk SSSR 1967, 728–735.
Acknowledgments
This work was supported financially by the Russian Foundation
for Basic Research (projects nos. 04-03-32662 and 04-03-32549) and
the Russian Academy of Sciences within the frame of the subprog-
ram “Theoretical and experimental study of chemical bonding and
[9] A. C. Chapman, A. G. Davies, P. G. Harrison, W. McFarlane,
J. Chem. Soc. C 1970, 821–824.
4276
www.eurjic.org
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2006, 4271–4277