M. W. C. Robinson et al. / Tetrahedron Letters 48 (2007) 4723–4725
4725
sea) for his assistance in obtaining EDX data and Dr.
S.H. Taylor (Cardiff University) for his continued inter-
est in this work.
Xiao, L.; Ni, H. Y. Colloids Surf. A: Physiochem. Eng.
Aspects 2004, 247, 129–136.
6
. The corresponding zirconiasilicates have been shown to
display lower selectivity for the b-alkoxyalcohol: Barreca,
D.; Copley, M. P.; Graham, A. E.; Holmes, J. D.; Morris,
M. A.; Seraglia, R.; Spalding, T. R.; Tondello, E. Appl.
Catal. A: Gen. 2006, 304, 14–20.
References and notes
7
. Catalyst preparation (Si/Al = 14): The cetyltrimethyl-
ammonium bromide template (4.0 g, 11 mmol) was dis-
solved in a solution of hydrochloric acid (2.5 mL, 0.1 M)
and ethanol (17.5 mL). Tetraethylorthosilicate (25 mL,
112 mmol) was then added and the mixture stirred for
10 min at 40 ꢁC. The solution was cooled to room
temperature and aluminium nitrate nonahydrate (3.35 g,
8.95 mmol) was added in one portion. The mixture was
stirred for 20 min and then left to age at room temperature
for 1 week. The resultant orange solid was crushed into a
fine powder, dried overnight at 90 ꢁC and then calcined in
air at 550 ꢁC for 12 h to remove the organic template. The
resulting white aluminosilicate catalyst was characterized
1
2
. (a) Birkinshaw, T. N. In Comprehensive Organic Func-
tional Group Transformations; Katritzky, A. R., Meth-
Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford, 1995;
Vol. 1, pp 204–228; (b) Rao, A. S.; Paknikar, S. K.;
Kirtune, J. G. Tetrahedron 1983, 39, 2323–2367; (c)
Taylor, S. K. Tetrahedron 2000, 56, 1149–1163; (d) Posner,
G. H.; Maxwell, J. P.; Kahraman, M. J. Org. Chem. 2003,
6
8, 3049–3054.
. (a) Liu, Y. J.; Chu, T. Y.; Engel, R. Synth. Commun. 1992,
367–2371; (b) Posner, G. H.; Rogers, D. Z.; Kinzig, C.
H.; Gurria, G. M. Tetrahedron Lett. 1975, 16, 3597–3600;
c) Liu, C.; Hashimoto, Y.; Kudo, K.; Saigo, K. Bull.
2
(
2
7
29
Chem. Soc. Jpn. 1996, 69, 2095–2105; (d) Moberg, C.;
Rakos, L.; Tottie, L. Tetrahedron Lett. 1992, 33, 2191–
by EDX, MAS-NMR ( Al and Si) and XRD. Surface
area measurements and pore size distribution were
obtained from BET experiments.
2
194.
. (a) Pastor, I. M.; Yus, M. Curr. Org. Chem. 2005, 9, 1–29;
b) Smith, J. G. Synthesis 1984, 629–656; (c) Prestat, G.;
Baylon, C.; Heck, M.-P.; Mioskowski, C. Tetrahedron
Lett. 2000, 41, 3829–3831; (d) Barluenga, J.; V a´ zquez-
Villa, H.; Ballesteros, A.; Gonz a´ lez, J. M. Org. Lett. 2002,
3
8. Silicate MCM-41 has previously been shown to promote
acid catalyzed transformations: (a) Tanaka, Y.; Sawa-
mura, N.; Iwamoto, M. Tetrahedron Lett. 1998, 39, 9457–
9460; (b) Chaudhari, K.; Bal, R.; Chandwadkar, A. J.;
Sivasanker, S. J. Mol. Catal. A: Chem. 2002, 177, 247–253.
9. Modification of the Lewis acidic properties of silicate
MCM-41 by either in-situ or post-syn treatment results in
a more catalytically active material: (a) Corma, A. Chem.
Rev. 1997, 97, 2373–2419; (b) Kugita, T.; Jana, S. K.;
Owada, T.; Hasimoto, N.; Onaka, M.; Namba, S. Appl.
Catal. A: Gen. 2003, 245, 353–362; (c) Sayari, A. Chem.
Mater. 1996, 8, 1840–1852.
10. (a) Garc ´ı a-Vidal, J. A.; Dur a´ n-Valle, C. J.; Ferrera-
Escudero, S. Appl. Surf. Sci. 2006, 252, 6064–6066; (b)
Petrov, V. A. J. Fluorine Chem. 2004, 125, 531–536.
11. These results and subsequent work in this area will be the
subject of a future publication.
(
4
, 2817–2819.
4
. (a) Vijender, M.; Kishore, P.; Narender, P.; Satanarayana,
B. J. Mol. Catal. A: Chem. 2007, 266, 290–293; (b)
Kantam, M. L.; Santhi, P. L.; Ram Prasad, K. V.;
Figueras, F. J. Mol. Catal. A: Chem. 2000, 156, 289–292;
(
c) Ramesh Kumar, S.; Leelavathi, P. J. Mol. Catal. A:
Chem. 2006, 266, 65–68; (d) Harrak, Y.; Pujol, M. D.
Tetrahedron Lett. 2002, 43, 819–822; (e) Bandgar, B. P.;
Patil, A. V.; Chavan, O. S.; Kamble, V. T. Catal. Commun.
2
007, 8, 1065–1069; (f) Varapathi, R. V.; Reddy, S. M.;
Tammishetti, S. React. Funct. Polym. 2005, 64, 157–161;
g) Yarapathy, V. R.; Mekala, S.; Venkateswara Rao, B.;
(
Tammishetti, S. Catal. Commun. 2006, 7, 466–471.
. (a) Palani, A.; Gokulakrishnan, N.; Palanichamy, M.;
Pandurangan, A. Appl. Catal. A: Gen. 2006, 304, 152–158;
12. Lewars, E. G. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Lwowski, W., Eds.;
Pergamon: Oxford, 1984; Vol. 7, pp 100–113.
5
(
b) Kugita, T.; Ezawa, M.; Owada, T.; Tomita, Y.;
13. Zhao, X. S.; Lu, G. Q.; Hu, X. Colloids Surf. A:
Physiochem. Eng. Aspects 2001, 179, 261–269.
Namba, S.; Hashimoto, N.; Onaka, M. Microporous
Mesoporous Mater. 2001, 44–45, 531–536; (c) Sakthivel,
A.; Chen, W.-H.; Liu, S.-H.; Huang, S.-J.; Lo, A.-Y.; Hsu,
Y.-H.; Lin, S. D.; Liu, S.-B. Catal. Lett. 2006, 108, 173–
14. (a) Gajewski, J. J.; Gee, K. R.; Juray, J. J. Org Chem.
1990, 55, 1813–1822; (b) Lowden, C. T.; Mendoza, J. S.
Tetrahedron Lett. 2002, 43, 979–982; (c) Becker, A. R.;
Janusz, J. M.; Bruice, T. C. J. Am. Chem. Soc. 1979, 101,
5679–5687.
1
78; (d) Dirk, E.; Vos, D.; Dams, M.; Sels, B. F.; Jacobs,
P. A. Chem. Rev. 2002, 102, 3615–3640; (e) Huang, L.;