Angewandte Chemie International Edition
10.1002/anie.201801649
COMMUNICATION
this set of compounds. Yet, all four structures are found in the
same landscape, showing clearly that the latter is a pool from
which equivalent structures may effectively be drawn.
[2]
3]
a) R. J. Davey, G. Dent, R. K. Mughal, S. Parveen, Cryst. Growth Des.
2006, 6, 1788-1796; b) R. J. Davey, S. L. M. Schroeder, J. H. ter Horst,
Angew. Chem. Int. Ed. 2013, 52, 2166-2179; c) B. Moulton, M. J.
Zaworotko, Chem. Rev. 2001, 101, 1629-1658.
[
a) D. Braga, F. Grepioni, Chem. Commun. 2005, 3635-3645; b) A.
Nangia, Acc. Chem. Res. 2008, 41, 595-604; c) A. Mukherjee, P.
Grobelny, T. S. Thakur, G. R. Desiraju, Cryst. Growth Des. 2011, 11,
We have explored the structural landscapes of 4BCA and 4CCA
using bromo-methyl and chloro-methyl exchange phenomena as
tools. One may draw several conclusions: (1) 4CCA, because of
the geometric and electronic similarities of the Cl and the Br
atoms, is a good model for charting the landscape of the more
computationally challenging 4BCA. (2) 4BCA and 4CCA have
virtually identical structural landscapes and so they are
completely miscible. (3) Isolation of solid solutions with crystal
structures that are different from either of the parent structures
hints that interaction directionality plays a role in the packing of
molecules. To the best of our knowledge, this is the first such
report in the context of chloro-methyl and bromo-methyl
exchange experiments.
2637-2653; d) T. S. Thakur, R. Sathishkumar, A. G. Dikundwar, T. N.
Guru Row, G. R. Desiraju, Cryst. Growth Des. 2010, 10, 4246-4249; e)
J. Henderson, M. Masino, L. E. Hatcher, G. Kociok-Köhn, T. Salzillo, A.
Brillante, P. R. Raithby, A. Girlando, E. Da Como, Cryst. Growth Des.
2
018, 18, 2003-2009.
a) T. S. Thakur, R. Dubey, G. R. Desiraju, Annu. Rev. Phys. Chem.
015, 66, 21-42; b) P. Raiteri, R. Martoňák, M. Parrinello, Angew.
[
4]
2
Chem. Int. Ed. 2005, 44, 3769-3773; c) A. R. Oganov, A. O. Lyakhov,
M. Valle, Acc. Chem. Res. 2011, 44, 227-237; d) Q. Zhu, A. G.
Shtukenberg, D. J. Carter, T.-Q. Yu, J. Yang, M. Chen, P. Raiteri, A. R.
Oganov, B. Pokroy, I. Polishchuk, P. J. Bygrave, G. M. Day, A. L. Rohl,
M. E. Tuckerman, B. Kahr, J. Am. Chem. Soc. 2016, 138, 4881-4889.
G. R. Desiraju, Nat. Mater. 2002, 1, 77-79.
[
[
5]
6]
a) L. Yu, Acc. Chem. Res. 2010, 43, 1257-1266; b) C. M. Reddy, S.
Basavoju, G. R. Desiraju, Chem. Commun. 2005, 2439-2441; c) G. M.
J. Schmidt, in Pure Appl. Chem., Vol. 27, 1971, p. 647; d) G. Bolla, A.
Nangia, Chem. Commun. 2016, 52, 8342-8360.
[
[
7]
8]
S. Parveen, R. J. Davey, G. Dent, R. G. Pritchard, Chem. Commun.
2005, 1531-1533.
a) I. D. H. Oswald, I. Chataigner, S. Elphick, F. P. A. Fabbiani, A. R.
Lennie, J. Maddaluno, W. G. Marshall, T. J. Prior, C. R. Pulham, R. I.
Smith, CrystEngComm 2009, 11, 359-366; b) E. V. Boldyreva, Acta
Cryst. A 2008, 64, 218-231.
Figure 5. Melting point vs. composition plots of (a) the 4BCA-4CCA, (b) the
4BCA-4MCA, and (c) the 4CCA-4MCA systems.
[
9]
a) R. Dubey, M. S. Pavan, G. R. Desiraju, Chem. Commun. 2012, 48,
9
1
4
020-9022; b) R. Dubey, G. R. Desiraju, Chem. Commun. 2014, 50,
181-1184; c) R. Dubey, G. R. Desiraju, Cryst. Growth Des. 2015, 15,
89-496.
It is likely that we would obtain non-stoichiometric mixed crystals
in a different structure type when the interactions involved are
neither isotropic enough to allow the formation of a solid solution
in one of the native parent structure types, nor strong/directional
enough to give rise to a stoichiometric compound. We have also
noted in a prior study that at least two of these structure types,
namely (4-7-15) and (7-4-31), are part of the crystal structure
landscape of unsubstituted CA. Another structure type (4-7-31)
which is seen in the CSP of 4CCA, is also a part of the
landscape of unsubstituted CA. One may also draw in the
unsubstituted compound into the landscape. These structures
constitute a closed set, recurring irrespective of the substituent
[10] V. R. Thalladi, H.-C. Weiss, D. Bläser, R. Boese, A. Nangia, G. R.
Desiraju, J. Am. Chem. Soc. 1998, 120, 8702-8710.
[11] a) G. R. Desiraju, J. A. R. P. Sarma, Proc. Indian Acad. Sci., Chem. Sci.
1986, 96, 599-605; b) O. Shemchuk, D. Braga, F. Grepioni, Chem.
Commun. 2016, 52, 11815-11818; c) M. Polito, E. D'Oria, L. Maini, P. G.
Karamertzanis, F. Grepioni, D. Braga, S. L. Price, CrystEngComm.
2008, 10, 1848-1854; d) D.-K. Bucar, A. Sen, S. V. S. Mariappan, L. R.
MacGillivray, Chem. Commun. 2012, 48, 1790-1792; e) M. Lusi, Cryst.
Growth Des. 2018, 18, 3704-3712.
[12] A. I. Kitaigorodskii, Mixed Crystals, Springer Verlag, 1984.
[13] a) S. Chakraborty, G. R. Desiraju, CrystEngComm 2018, 20, 2793-
2805; b) S. Chakraborty, G. R. Desiraju, Cryst. Growth Des. 2018, 18,
(
H, F, Cl, Br or Me) used in the exercise; this proves the
generality of the concept of the crystal structure landscape.
3607-3615; c) M. A. Khoj, C. E. Hughes, K. D. M. Harris, B. M. Kariuki,
Cryst. Growth Des. 2017, 17, 1276-1284; d) J. d. C. Fonseca, J. C.
Tenorio Clavijo, N. Alvarez, J. Ellena, A. P. Ayala, Cryst. Growth Des.
2
018, 18, 3441-3448.
14] a) M. Dabros, P. R. Emery, V. R. Thalladi, Angew. Chem. Int. Ed. 2007,
6, 4132-4135; b) M. Paul, S. Chakraborty, G. R. Desiraju, J. Am.
Experimental Section
[
4
Experimental details are provided in the supplementary material.
Chem. Soc. 2018, 140, 2309-2315.
[
[
15] J. A. R. P. Sarma, G. R. Desiraju, Acc. Chem. Res. 1986, 19, 222-228.
16] The numbers are the closest integer approximations to the cell
dimensions, as per the convention described in reference 9a.
17] α, β and γ are structure types described in M. D. Cohen, G. M. J.
Schmidt, J. Chem. Soc. 1964, 1996-2000.
Acknowledgements
[
[
SC thanks the IISc for a SRF and GRD thanks the DST, New
Delhi, for the award of a JC Bose Fellowship.
18] The CSP exercises were carried out using only the pure components
as input. If solid solutions are to be used as input, the presence of two
different atoms at the same crystallographic site must be accounted for,
because such
a procedure is liable to cause problems with the
Keywords: Solid solution • Crystal structure landscape • Crystal
engineering • Crystal structure prediction • Doping
geometry optimization and the force fields.
[
1]
a) G. R. Desiraju, Acta Cryst. B 2017, 73, 775-778; b) S. Tothadi, G. R.
Desiraju, Philos. Trans. Royal Soc. A 2012, 370, 2900.
This article is protected by copyright. All rights reserved.