ꢀ-L-Rhamnosidase from Streptomyces avermitilis
215
Table 1. Substrate Specificity of SaRha78A
2) Knox JP, FASEB J., 9, 1004–1012 (1995).
3
4
5
6
7
8
)
)
)
)
)
)
Gaspar Y, Johnson KL, McKenna JA, Bacic A, and Schultz CJ,
Plant Mol. Biol., 47, 161–176 (2001).
Substrate
Linkage
Specific activity (units/mg)
Kaneko S, Shimasaki T, and Kusakabe I, Biosci. Biotechnol.
Biochem., 57, 1161–1165 (1993).
Kaneko S, Sano M, and Kusakabe I, Appl. Environ. Microbiol.,
PNP-ꢀ-L-Rhap
Naringin
ꢀ-1
7:6 ꢁ 0:2
19:5 ꢁ 1:1
0:9 ꢁ 0:07
28:5 ꢁ 2:9
N.D.
ꢀ-1,2
ꢀ-1,6
ꢀ-1,6
ꢀ-1
Hesperidin
Rutin
Quercitrin
6
0, 3425–3428 (1994).
Kaneko S, Ishii T, Kobayashi H, and Kusakabe I, Biosci.
Biotechnol. Biochem., 62, 695–699 (1998).
Kaneko S, Higashi K, Yasui T, and Kusakabe I, J. Ferment.
Bioeng., 85, 519–521 (1998).
was quantified by the HPAEC-PAD system. The sugar
composition of the gum arabic was determined by a
method described in a previous paper and the molar
ratio of L-rhamnose, L-arabinose, D-galactose, and D-
glucuronic acid was 5:20:28:6.
Kaneko S, Arimoto M, Ohba M, Kobayashi H, Ishii T,
and Kusakabe I, Appl. Environ. Microbiol., 64, 4021–4027
2
2)
(
9) Kaneko S, Kuno A, Matsuo N, Ishii T, Kobayashi H, and
1998).
Kusakabe I, Biosci. Biotechnol. Biochem., 62, 2205–2210
(
1998).
0) Matsuo N, Kaneko S, Kuno A, Kobayashi H, and Kusakabe I,
Biochem. J., 346, 9–15 (2000).
As shown in Table 1, SaRha78A showed higher
activity for rutin (28:5 ꢁ 2:9 units/mg) and naringin
1
(
19:5 ꢁ 1:1 units/mg). It also showed activity for hes-
1
1) Kotake T, Kaneko S, Kubomoto A, Haque MA, Kobayashi H,
and Tsumuraya Y, Biochem. J., 377, 749–755 (2004).
peridin (0:9 ꢁ 0:07 units/mg), but not for quericitrin.
The activities for these flavonoids were much higher
than that for PNP-ꢀ-L-Rha, which was caused by the
difference between aglycon sides of the substrates. This
suggests that SaRha78A possesses subsite þ1, distin-
guishing the substrates. A similar tendency as to the
activity for these substrates was reported for RhaB from
12) Ichinose H, Yoshida M, Kotake T, Kuno A, Igarashi K,
Tsumuraya Y, Samejima M, Hirabayashi J, Kobayashi H, and
Kaneko S, J. Biol. Chem., 280, 25820–25829 (2005).
1
3) Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, Samejima
M, Watanabe Y, Kimura K, and Tsumuraya Y, Plant Physiol.,
1
38, 1563–1576 (2005).
1
4) Ichinose H, Kuno A, Kotake T, Yoshida M, Sakka K,
Hirabayashi J, Tsumuraya Y, and Kaneko S, Appl. Environ.
Microbiol., 72, 3515–3523 (2006).
3
5)
Aspergillus aculeatus. SaRha78A cleaved both the
-1,6 and the ꢀ-1,2-linked rhamnosyl residues. These
activities have been reported for both bacterial and
fungal enzymes belonging to GH78.
showed activity toward gum arabic, and the only L-
rhamnose was detected as a hydrolysis product
ꢀ
15) Kotake T, Tsuchiya K, Aohara T, Konishi T, Kaneko S, Igarashi
K, Samejima M, and Tsumuraya Y, J. Exp. Bot., 57, 2353–2362
3
4–37)
SaRha78A
(
2006).
1
1
6) Ichinose H, Kotake T, Tsumuraya Y, and Kaneko S, Biosci.
Biotechnol. Biochem., 70, 2745–2750 (2006).
(
Fig. 1C). The enzyme removed 0.7% L-rhamnose from
7) Ichinose H, Kotake T, Tsumuraya Y, and Kaneko S, Appl.
Environ. Microbiol., 74, 2379–2383 (2008).
the gum arabic. It removed 6.5% L-rhamnose from the
substrate when 2 mM calcium chloride was added to the
reaction mixture. These results suggest that SaRha78A
has a region influenced by calcium ions, except for the
catalytic domain, because enzyme activity was not
affected by any of the metal ions (data not shown).
Since the activity for polysaccharide increased, but not
for glycosides, it is expected that the enzyme has a
18) Konishi T, Kotake T, Soraya D, Matsuoka K, Koyama T,
Kaneko S, Igarashi K, Samejima M, and Tsumuraya Y,
Carbohydr. Res., 343, 1191–1201 (2008).
1
2
2
9) Ichinose H, Yoshida M, Fujimoto Z, and Kaneko S, Appl.
Microbiol. Biotechnol., 80, 399–408 (2008).
0) Fujimoto Z, Ichinose H, and Kaneko S, Acta Crystallogr. F, 64,
1
1) Fujimoto Z, Ichinose H, Harazono K, Honda M, Uzura A, and
007–1009 (2008).
3
8,39)
carbohydrate-binding module.
Two GH78 ꢀ-L-
Kaneko S, Acta Crystallogr. F, 65, 632–634 (2009).
22) Ichinose H, Fujimoto Z, Honda M, Harazono K, Nishimoto Y,
Uzura A, and Kaneko S, J. Biol. Chem., 37, 25097–25106
rhamnosidase structures have been solved. Both enzymes
are composed of four or five distinct domains. However,
the existence of a carbohydrate-binding module that
binds to L-rhamnose has not been confirmed.
(
2009).
3) Kotake T, Kitazawa K, Takata R, Okabe K, Ichinose H, Kaneko
2
S, and Tsumuraya Y, Biosci. Biotechnol. Biochem., 73, 2303–
The present study indicates that S. avermitilis pos-
sesses a ꢀ-L-rhamnosidase acting on arabinogalactan-
proteins. Calcium ions increased the amount of L-
rhamnose produced from gum arabic by the enzyme. It
remains to be determined which region of the enzyme is
affected by calcium ions. A detailed structure-function
study would be expected to answer the function of
calcium ions in the arabinogalactan degradation by
SaRha78A.
2309 (2009).
24) Ishida T, Fujimoto Z, Ichinose H, Igarashi K, Kaneko S, and
Samejima M, Acta Crystallogr. F, 65, 1274–1276 (2009).
2
2
5) Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, and
Kaneko S, J. Biol. Chem., 285, 34134–34143 (2010).
6) Takata R, Tokita K, Mori S, Shimoda R, Ichinose H, Kaneko S,
Igarashi K, Samejima M, Kotake T, and Tsumuraya Y,
Carbohydr. Res., 345, 2516–2522 (2010).
2
7) Tryfona T, Liang HC, Kotake T, Kaneko S, Marsh J, Ichinose
H, Lovegrove A, Tsumuraya Y, Shewry PR, Stephens E, and
Dupree P, Carbohydr. Res., 345, 2648–2656 (2010).
2
2
3
8) G o¨ llner EM, Ichinose H, Kaneko S, Blaschek W, and Classen B,
Acknowledgment
J. Cereal Sci., 53, 244–249 (2011).
9) Matulov a´ M, Capek P, Kaneko S, Navarini L, and Liverani FS,
Carbohydr. Res., 346, 1029–1036 (2011).
This work was supported in part by JSPS KAKENHI
Grant no. 22580110. We thank Ms. Mariko Honda for
assistance in characterization of the recombinant enzyme.
0) Kotake T, Hirata N, Degi Y, Ishiguro M, Kitazawa K, Takata R,
Ichinose H, Kaneko S, Igarashi K, Samejima M, and Tsumuraya
Y, J. Biol. Chem., 286, 27848–27854 (2011).
References
31) Michikawa M, Ichinose H, Momma M, Biely P, Jongkees S,
Yoshida M, Kotake T, Tsumuraya Y, Withers SG, Fujimoto Z,
and Kaneko S, J. Biol. Chem., 287, 14069–14077 (2012).
1
)
Seifert GJ and Roberts K, Annu. Rev. Plant Biol., 58, 137–161
2007).
(
32) Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba