Crystal Structure of VioA
4. Durán, N., Justo, G. Z., Ferreira, C. V., Melo, P. S., Cordi, L., and Martins,
D. (2007) Violacein: properties and biological activities. Biotechnol. Appl.
Biochem. 48, 127–133
dent substrate dehydrogenation. Proc. Natl. Acad. Sci. U.S.A. 97,
12463–12468
23. Matz, C., Webb, J. S., Schupp, P. J., Phang, S. Y., Penesyan, A., Egan, S.,
Steinberg, P., and Kjelleberg, S. (2008) Marine biofilm bacteria evade eu-
karyotic predation by targeted chemical defense. PLoS ONE 3, e2744
5. Tamaoki, T., Nomoto, H., Takahashi, I., Kato, Y., Morimoto, M., and
Tomita, F. (1986) Staurosporine, a potent inhibitor of phospholipid/Ca2ϩ
-
dependent protein kinase. Biochem. Biophys. Res. Commun. 135, 397–402 24. Macheroux, P. (1999) UV-visible spectroscopy as a tool to study flavopro-
6. Anizon, F., Belin, L., Moreau, P., Sancelme, M., Voldoire, A., Prudhomme,
teins. Methods Mol. Biol. 131, 1–7
M., Ollier, M., Sevère, D., Riou, J.-F., Bailly, C., Fabbro, D., and Meyer, T. 25. Faust, A., Niefind, K., Hummel, W., and Schomburg, D. (2007) The struc-
(1997) Syntheses and biological activities (topoisomerase inhibition and
antitumor and antimicrobial properties) of rebeccamycin analogues bear-
ing modified sugar moieties and substituted on the imide nitrogen with a
methyl group. J. Med. Chem. 40, 3456–3465
ture of a bacterial L-amino acid oxidase from Rhodococcus opacus gives
new evidence for the hydride mechanism for dehydrogenation. J. Mol.
Biol. 367, 234–248
26. Ida, K., Kurabayashi, M., Suguro, M., Hiruma, Y., Hikima, T., Yamomoto,
M., and Suzuki, H. (2008) Structural basis of proteolytic activation of
L-phenylalanine oxidase from Pseudomonas sp. P-501. J. Biol. Chem. 283,
16584–16590
7. Balibar, C. J., and Walsh, C. T. (2006) In vitro biosynthesis of violacein
from L-tryptophan by the enzymes VioA-E from Chromobacterium viola-
ceum. Biochemistry 45, 15444–15457
8. Nishizawa, T., Aldrich, C. C., and Sherman, D. H. (2005) Molecular anal-
ysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aero-
colonigenes ATCC 39243. J. Bacteriol. 187, 2084–2092
27. Holzapfel, C. W., Bischofberger, K., and Olivier, J. (1994) A simple cy-
cloaddition approach to a racemate of the natural sweetener monatin.
Synth. Commun. 24, 3197–3211
9. Kameya, M., Onaka, H., and Asano, Y. (2013) Selective tryptophan deter- 28. Yu, C., Liu, B., and Hu, L. (2001) Efficient Baylis-Hillman reaction using
mination using tryptophan oxidases involved in bis-indole antibiotic bio-
stoichiometric base catalyst and an aqueous medium. J. Org. Chem. 66,
synthesis. Anal. Biochem. 438, 124–132
5413–5418
10. Howard-Jones, A. R., and Walsh, C. T. (2005) Enzymatic generation of the 29. Borrell, J. I., Teixidó, J., Martínez-Teipel, B., Matallana, J. L., Copete, M. T.,
chromopyrrolic acid scaffold of rebeccamycin by the tandem action of
RebO and RebD. Biochemistry 44, 15652–15663
Llimargas, A., and García, E. (1998) Synthesis and biological activity of
4-amino-7-oxo-substituted analogues of 5-deaza-5,6,7,8-tetrahydrofolic
acid and 5,10-dideaza-5, 6,7,8-tetrahydrofolic acid. J. Med. Chem. 41,
3539–3545
11. Asamizu, S., Kato, Y., Igarashi, Y., Furumai, T., and Onaka, H. (2006)
Direct formation of chromopyrrolic acid from indole-3-pyruvic acid by
StaD, a novel hemoprotein in indolocarbazole biosynthesis. Tetrahedron 30. Kwon Youn, I., Hwan Yon, G., and Siek Pak, C. (1986) Magnesium-meth-
Lett. 47, 473–475
anol as a simple convenient reducing agent for ␣,-unsaturated esters.
Tetrahedron Lett. 27, 2409–2410
12. Asamizu, S., Hirano, S., Onaka, H., Koshino, H., Shiro, Y., and Nagano, S.
(2012) Coupling reaction of indolepyruvic acid by StaD and its product: 31. Mori, K., and Kisida, H. (1986) Synthesis of both the enantiomers of the
implications for biosynthesis of indolocarbazole and violacein. ChemBio-
Chem 13, 2495–2500
heterocyclic pheromones isolated from the male swift moth Hepialus
hecta L. Tetrahedron 42, 5281–5290
13. Spolitak, T., and Ballou, D. P. (2015) Evidence for catalytic intermediates 32. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P., and Duhr, S.
involved in generating the chromopyrrolic acid scaffold of rebeccamycin
by RebO and RebD. Arch. Biochem. Biophys. 573, 111–119
(2011) Molecular interaction studies using microscale thermophoresis.
Assay Drug Dev. Technol. 9, 342–353
14. Sánchez, C., Braña, A. F., Méndez, C., and Salas, J. A. (2006) Reevaluation
of the violacein biosynthetic pathway and its relationship to indolocarba-
zole biosynthesis. ChemBioChem 7, 1231–1240
33. Baskaran, K., Duarte, J. M., Biyani, N., Bliven, S., and Capitani, G. (2014) A
PDB-wide, evolution-based assessment of protein-protein interfaces.
BMC Struct. Biol. 14, 22
15. Sánchez, C., Butovich, I. A., Braña, A. F., Rohr, J., Méndez, C., and Salas, 34. Dym, O., and Eisenberg, D. (2001) Sequence-structure analysis of FAD-
J. A. (2002) The biosynthetic gene cluster for the antitumor rebeccamycin:
characterization and generation of indolocarbazole derivatives. Chem. 35. Holm, L., and Rosenström, P. (2010) Dali server: conservation mapping in
Biol. 9, 519–531 3D. Nucleic Acids Res. 38, W545–W549
16. Onaka, H., Taniguchi, S., Igarashi, Y., and Furumai, T. (2003) Character- 36. Moustafa, I. M., Foster, S., Lyubimov, A. Y., and Vrielink, A. (2006) Crystal
containing proteins. Protein Sci. 10, 1712–1728
ization of the biosynthetic gene cluster of rebeccamycin from Lecheva-
lieria aerocolonigenes ATCC 39243. Biosci. Biotechnol. Biochem. 67,
127–138
structure of LAAO from Calloselasma rhodostoma with an L-phenylala-
nine substrate: insights into structure and mechanism. J. Mol. Biol. 364,
991–1002
17. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez,
R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., and Higgins,
D. G. (2011) Fast, scalable generation of high-quality protein multiple
sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539
18. Shinoda, K., Hasegawa, T., Sato, H., Shinozaki, M., Kuramoto, H., Taka-
37. Yano, J., Kern, J., Irrgang, K. D., Latimer, M. J., Bergmann, U., Glatzel, P.,
Pushkar, Y., Biesiadka, J., Loll, B., Sauer, K., Messinger, J., Zouni, A., and
Yachandra, V. K. (2005) X-ray damage to the Mn4Ca complex in single
crystals of photosystem II: a case study for metalloprotein crystallography.
Proc. Natl. Acad. Sci. U.S.A. 102, 12047–12052
miya, Y., Sato, T., Nikaidou, N., Watanabe, T., and Hoshino, T. (2007) 38. Pierce, L. T., Cahill, M. M., and McCarthy, F. O. (2011) Synthesis of novel
Biosynthesis of violacein: a genuine intermediate, protoviolaceinic acid,
produced by VioABDE, and insight into VioC function. Chem. Commun.
40, 4140–4142
3,4-diaryl-5-aminopyrazoles as potential kinase inhibitors. Tetrahedron
67, 4601–4611
39. Wartmann, T., and Lindel, T. (2013) L-Phototryptophan. Eur. J. Org.
Chem. 2013, 1649–1652
19. Blanchard, M., Green, D. E., Nocito, V., and Ratner, S. (1944) L-Amino
acid oxidase of animal tissue. J. Biochem. 155, 421–440
40. Henderson Pozzi, M., and Fitzpatrick, P. F. (2010) A lysine conserved in
the monoamine oxidase family is involved in oxidation of the reduced
flavin in mouse polyamine oxidase. Arch. Biochem. Biophys. 498, 83–88
41. Chen, H. S., Wang, Y. M., Huang, W. T., Huang, K. F., and Tsai, I. H. (2012)
Cloning, characterization and mutagenesis of Russell’s viper venom
L-amino acid oxidase: Insights into its catalytic mechanism. Biochimie 94,
335–344
20. Geueke, B., Hummel, W. (2002) A new bacterial l-amino acid oxidase with
a broad substrate specificity: purification and characterization. Enzyme
Microb. Technol. 31, 77–87
21. Pawelek, P. D., Cheah, J., Coulombe, R., Macheroux, P., Ghisla, S., and
Vrielink, A. (2000) The structure of L-amino acid oxidase reveals the sub-
strate trajectory into an enantiomerically conserved active site. EMBO J.
19, 4204–4215
42. Wellner, D., and Meister, A. (1961) Studies on the mechanism of action of
L-amino acid oxidase. J. Biol. Chem. 236, 2357–2364
22. Umhau, S., Pollegioni, L., Molla, G., Diederichs, K., Welte, W., Pilone,
M. S., and Ghisla, S. (2000) The x-ray structure of D-amino acid oxidase at 43. Sanchez, C., Salas, A. P., Brana, A. F., Palomino, M., Pineda-Lucena, A.,
very high resolution identifies the chemical mechanism of flavin-depen-
Carbajo, R. J., Mendez, C., Moris, F., and Salas, J. A. (2009) Generation of
SEPTEMBER 16, 2016•VOLUME 291•NUMBER 38
JOURNAL OF BIOLOGICAL CHEMISTRY 20083