148
R. Minkwitz et al. / Journal of Fluorine Chemistry 99 (1999) 145±149
TheB3LYP-calculationsalso®ttheexperimentalvaluesfor
which leads to an O±F-bond weakening and a very long
O±F-distance of 157.7 pm. The corresponding NBOs are
shown in Fig. 2. A transmittance of electron density from a
bonding orbital or a lone pair into a non-bonding orbital is
called `negative hyperconjugation'.
known (CF3)2NOX-compounds e.g. (CF3)2NON(CF3)2
[8,10]. It has to be concluded that this method leads to
authentic bond lengths and angles for the target molecule
(CF3)2NOF.
In Table 3 the B3LYP-structural parameters for (CF3)2-
NOF are compared with those of CF3OF, (CF3)2NONO,
N2O5 and (CF3)2NOCH3. The calculated structure of
(CF3)2NOF is presented in Fig. 1.
To summarise it has to be pointed out that from the
density functional calculations we obtained a good explana-
tion for experimental results. It was shown that (CF3)2NOF
is model substance for negative hyperconjugation. A pos-
sible method for the isolation of this molecule can be seen in
the low temperature radical combination of (CF3)2NOꢂ
and Fꢂ radicals. O2F2 is synthesised on a similar way
[30±32].
The C±N±O-and C±N±C-angles of 117.1 and 120.78
indicate a nearly planar arrangement in (CF3)2NOF. For
(CF3)2NOCH3 a C±N±O-angle of 108.18 was determined by
electron distribution [21]. The comparison with
(CF3)2NONO [22] and N2O5 [23] shows, that in (CF3)2NOF
a short N±O-bond of 128.3 pm is present. These facts
suggest signi®cant contribution of a `double bond no bond'
component shown by the mesomeric forms in (8) and give
an explanation for the observed formation of CF3N==O and
CF4 in the discussed experiments.
References
[1] R. Gatti, E.H. Staricco, J.E. Sicre, H.J. Schumacher, Angew. Chem.
75 (1963) 137.
[2] I.J. Solomon, A.J. Kacmarek, J.K. Raney, J. Phys. Chem. 72 (1968)
2262.
ꢀCF32N O F$ꢀCF32NO F
(8)
[3] R.F. Merritt, J.K. Ruff, J. Org. Chem. 30 (1965) 328.
[4] R.F. Merritt, J.K. Ruff, J. Org. Chem. 30 (1965) 3968.
[5] R.F. Merritt, J.K. Ruff, J. Org. Chem. 30 (1965) 4367.
[6] L.R. Anderson, W.B. Fox, J. Am. Chem. Soc. 89 (1967) 4313.
[7] R. Minkwitz, S. Reinemann, Z. Anorg. Allg. Chem., In press.
[8] S. Reinemann, R. Minkwitz, H. Oberhammer, Angew. Chem. 109
(1997) 1579.
For an appropriate description of the O±F bonding, the
electronic interactions in (CF3)2N±O±F have to be investi-
gated by a NBO-analysis [25±27].
The concept of the `Generalised Anomeric Effect' gives a
good explanation for the long O±F-distance [28]. The
electronic interactions in (CF3)2N±O±F are very similar
to those in O2F2, where ꢁ-contributions to the O±O-bond
are responsible for the short O±O-distance of 122 pm and
the partial occupation of the s*(O±F)-orbitals lead to O±F-
distances of 158 pm [28,29]. In (CF3)2N±O±F the electron
pair of the nitrogen atom p-LP(N) interacts with the non-
bonding s*(O±F)-orbitals. By this interaction electron den-
sity is transmitted from the p-LP(N) in the s*(O±F)-orbitals,
[9] S. Reinemann, R. Minkwitz, H. Oberhammer, Angew. Chem. Int. Ed.
36 (1997) 1518.
[10] S. Reinemann, R. Minkwitz, K. Kowski, P. Rademacher, J. Eur.
Inorg. Chem. 10 (1998) 1.
[11] R. Minkwitz, A. Liedtke, Inorg. Chem. 28 (1989) 1627.
[12] I.J. Solomon, A.J. Kacmarek, W.K. Sumida, J.K. Raney, Inorg.
Chem. 11 (1972) 195.
[13] D.D. DesMarteau, Inorg. Chem. 11 (1972) 193.
[14] R.E. Banks, C. Oppenheim, J. Fluorine Chem. 12 (1978) 30.
[15] W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab Initio
Molecular Orbital Theory, Wiley, New York, 1986.
[16] A.D. Becke, J. Chem. Phys. 98 (1993) 5648±5652.
[17] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785±789.
[18] M. J. Frisch, G.W. Trucks, H. B. Schlegel, P.M.W. Gill, B.G.
Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Peterson,
J.A. Montgomery, K. Raghavachari, M.A. Lahman, V.G. Zakrzews-
ki, J.V. Ortiz, J.B. Foresman, J. Ciolowski, B. Stefanov, A.
Nanayakara, M. Challacombe, C.Y. Peng, R.L. Martin, D.J. Fox,
J.S. Binkley, D.J. Defrees, J. Baker, J.J.P. Steward, M. Head-Gordon,
C. Gonzales, A.J. Pople, G94 Gaussian 94, revisionA.1, Gaussian,
Inc., Pittsburgh, PA, 1995.
[19] L. Hedberg, K. Hedberg, P.G. Eller, R.R. Ryan, Inorg. Chem. 27
(1988) 232.
[20] H.G. Mack, H. Oberhammer, Chem. Phys. Lett. 145 (1988) 121.
[21] B. Casper, J. Jakob, R. Minkwitz, H. Oberhammer, Chem. Ber. 129
(1996) 653.
[22] H.G. Ang, M.F. Klapdor, W.I. Kwik, Y.W. Lee, H.G. Mack, D.
Mootz, W. Poll, H. Oberhammer, J. Am. Chem. Soc. 115 (1993)
6929.
[23] B.W. McClelland, L. Hedberg, K. Hedberg, K. Hagen, J. Am. Chem.
Soc. 105 (1983) 3789.
Fig. 2. Hyperconjugation in (CF3)2NOF, orbital contour diagram (+) of
overlapping O±F antibond (s*(O±F)) and nitrogen lone pair (p-LP(N)). The
diagram shows an intersection of the F±O±N-plane.
[24] F.P. Diodati, L.S. Bartell, J. Mol. Struct. 8 (1971) 395.
[25] J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211.
[26] A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066.