152
N. V. Likhanova, M. A. Veloz, H. Höpfl, D. J. Matías, V. E. Reyes, O. Olivares, R. Martínez-Palou
Vol 44
G. Lupidi, N. Mohmoud, F. Bevilacqua and G. J. Palu, J. Med. Chem.,
38, 4019 (1995); [b] D. J. Cundy, G. Holan, M. Otaegui and G. W.
Simpson, Bioorg. Med. Chem. Lett., 7, 669 (1997); [c] A. G. Arvanitis,
J. T. Rescinito, C. R. Arnold, R. G. Wilde, G. A. Cain, J. H. Sun, J.-S.
Yan, C. A. Teleha, L. W. Fitzgerald, J. McElroy, R. Zaczek, P. R.
Hartig, S. Grossman, S. P. Arneric, P. J. Gilligan, R. E. Olson and D. W.
Roberston, Biorg. Med. Chem. Lett., 13, 125 (2003).
[4a] V. Grumel, J.-Y. Mérour and G. Guillaumet, Heterocycles,
55, 1329 (2001); [b] C. W. Phoon, P. Y. Ng, A. E. Ting, S. L. Yeo and
M. M. Sim, Bioorg. Med. Chem. Lett., 11, 1647 (2001); [c] A. Pinar, P.
Yurdakul, I. Yildiz, O. Temiz-Arpaci, N. L. Acan, E. Aki-Sener and I.
Yalcin, Biochem. Biophys. Res. Commun., 317, 670 (2004).
[5a] M. R. Grimmett, in Comprehensive Heterocyclic Chemistry,
ed, Pergamon, New York, NY, 1984, pp. 345-498; [b] G. V. Boyd, in
Comprehensive Heterocyclic Chemistry, ed, Pergamon, New York, NY,
1984, pp. 177-233; [c] A.-B. A. M. Ghattas and H. M. Moustafa, Synth.
Commun., 30, 3423 (2000); [d] M. Gupta, P. Mathur and R. J. Butcher,
Inorg. Chem., 40, 878 (2001).
[6a] M. Berrada, Z. Anbaoui, N. Lajrhed, M. Berrada and N.
Knouzi, Chem. Mat., 9, 1989 (1999); [b] M. Berrada, F. Carriere, A.
Abourriche, A. Benamara, N. Lajrhed, M. Kabbaj and M. Berrada, Mat.
Chem., 12, 3551 (2002); [c] H. H. Wang and S. P. Wu, J. Appl. Polym.
Sci., 90, 1435 (2003); [d] L.-C. S. Hsu, K. Ch. Chang, Y. P. Huang and
S. J. Tsai, J. Appl. Polym. Sci., 88, 2388 (2003).
[7a] M. Kliskic, J. Radisevic and S. Gudic, J. Appl. Electrochem.,
27, 947 (1997); [b] V. S. Sastri and J. R. Perumaredi, Corrosion, 50, 432
(1994); [c] V. S. Sastri and J. R. Perumareddi, Corrosion, 53, 617
(1997); [d] Y. Xiao-Ci, Z. Hong, L. Ming-Dao, R. Hong-Xuan and Y.
Lu-An, Corrosion Sci., 42, 645 (2000); [e] M. Lashgari, M. R. Arshadi
and Gh. A. Parsafar, Corrosion, 61, 780 (2005); [f] M. A. Veloz and I.
González, Corrosion, 62, 283 (2006).
[8a] G. Lewis, Corrosion Sci., 22, 579 (1982); [b] A. Popova, M.
Christov and T. Deligeorgiev, Corrosion, 59, 756 (2003); [c] M.
Christov and A. Popova, Corrosion Sci., 46, 1613 (2004); [d] A. Popova,
M. Christov and T. Deligeorgiev, Corrosion Sci., 46, 1333 (2004).
[9a] A. M. Al-Mayouf, A. A. Al-Suhybani and A. K. Al-Ameery,
Desalination, 116, 25 (1998); [b] D.-q. Zhang, L.-x. Gao and G.-d.
Zhou, Corrosion Sci., 46, 3031 (2004).
[10a] A. Loupy, Microwave in Organic Synthesis, Wiley-VCH,
Weinheim, 2002; [b] B. L. Hayes, Microwave Synthesis: Chemistry at
the Speed of Light, CEM Publishing, Matthews, 2002; [c] P. Lidstöm
and J. P. Tierney, Microwave-Assisted Organic Synthesis, Blackwell
Scientific, 2005; [d] C. O. Kappe, Microwaves in Organic and Medicinal
Chemistry, Wiley-VCH, Weinheim, 2005; [e] R. Martínez-Palou,
Química en Microondas, CEM Publishing, Matthews, 2006.
[11a] T. Welton, Chem. Rev., 99, 2071 (1999); [b] H. Zhao and S.
V. Malhotra, Aldrichimica Acta, 35, 75 (2002); [c] S. A. Forsyth, J. M.
Pringle and D. R. MacFarlane, Aust. J. Chem., 57, 113 (2004); [d] P. J.
Scammells, J. A. Scott and R. D. Singer, Aust. J. Chem., 158, 155
(2005); [e] P. Wasserscheid and W. Keim, Ionic Liquids in Synthesis,
Wiley-VCH, Wenheim, 2004.
Potentiodynamic Polarization. Potentiodynamic polarization
tests were carried out using a typical three-electrode cell within
the range of Ecorr ± 0.3 V. A calomel electrode was used as
reference, graphite bar as a counter electrode and a carbon steel
(SAE 1018) disc with 0.503 cm2 transversal area as working
electrode. This electrode was polished before each test with SIC
emery paper (600 grid) and rinsed with deionized water.
Corrosive Solution Preparation. A corrosive environment
of the type used in the NACE TM 0177 method was prepared.
The composition of the solution used was: 0.04 M CH3COOH/
NaOOCCH3, pH = 3.5; 30 172 ppm Cl- as NaCl (0.52 M
Chloride). The solution was prepared with deionized water,
deaerated with gaseous nitrogen. Analytical grade reagents were
employed.
Preparation of the Inhibitor Solutions (with 1-4). For each
inhibitor, a 10,000 ppm solution was prepared from 1.00 g of the
compound, which was dissolved in DMSO (10 mL). Depending
on the inhibitor concentration required, a proportional volume of
the compound was calculated, and deposited in a 100 mL
volumetric flask that was filled up with the corrosive solution.
Testing Preparation. The testing consisted of carbon steel
1018 specimens (2.54 x 1.25 x 0.025). Sheet specimens were
ground with silica sand retained in a mesh number 100 in a
universal mixer ERWEKA model AR 400 at 100 rpm for 72 h.
To remove the corrosion products formed on the metallic surface
after grounding, samples were ultrasonically degreased in
hexane, rinsed in double distilled water and acetone, dried in a
forced current of nitrogen and kept in a desiccator before being
exposed to the aqueous test environment.
Experiment for the Specimens Corrosion. The specimens
were immersed into the glass cells containing 100 mL of the
corrosive solution and 0 (blank) and 50 ppm of 1-4, respectively.
Experiments were performed at 60 ºC for 48 h. The cells were
placed in a rotator dynamic evaluator model C5-EDP-020-D.
After of the exposure time, the specimen was taken out and
washed with double distilled water. The corrosion product on
the steel surface was mechanically removed by rubbing it with a
brush. The specimens were washed in an ultrasonic bath with
acetone, dried in a flux of high purity nitrogen, set to dry in a
stove at 100 ºC by 2 h.
Surface Examination. Blistering surfaces were observed and
recording by using a velocity high camera model Kodak Mega
Plus ES310/T; controlled by a PC through the IMAQ Vision
Builder software provided by National Instruments.
REFERENCES
[12a] N. E. Leadbeater, H. M. Torenius H. Tye, Comb. Chem. High
Throughput Screen., 7, 511 (2004); [b] K. G. Mayo, G. H. Nearhoof and
J. J. Kiddle, Org. Lett., 4, 1567 (2002); [c] S. Garbacia, B. Desai, O.
Lavastre and C. O. Kappe, J. Org. Chem. 68, 9136 (2003); [d] N.
Srinivaasan and A. Ganesan, Chem. Commun. 916 (2003); [e] Y. Peng
and G. Song, Tetrahedron Lett. 45, 5313 (2004); [f] Y.-H. Yen and Y.-
H, Chu, Tetrahedron Lett. 45, 8137 (2004); [g] K. M. Brummond and D.
Chen, Org. Lett. 7, 3473 (2005).
[13a] D. H. Hein and R. J. Halmeim, J. Am. Chem. Soc., 79, 427
(1957); [b] J. M. Aizpurua and C. Palomo, Bull. Soc. Chim. Fr., II, 142
(1984); [c] P. Savarino, R. Carpignano, G. Viscardi E. Barni and G. Di
Modica, J. Heterocyclic Chem., 25, 1675 (1988); [d] A. O. Aldehamid,
C. Párkanyi, S. M. K. Rashid and W. D. Lloyd, J. Heterocyclic Chem.,
25, 403 (1988); [e] E. Alcalde, L. Pérez-García, I. Dinarés and J. Frigola,
J. Org. Chem., 56, 6516 (1991); [f] A. B. Alloum, K. Bougrin and M.
Soufiaoui, Tetrahedron Lett., 44, 5935 (2003).
[1a] W. A. Denny, G. W. Rewcastle and B. Baguley, J. Med.
Chem., 33, 814 (1990); [b] C. Cermelli, G. Baggio, L. Lupo, M.
Malagoli, M. Castelli, L. Garuti, L and Varoli, L, Anti-cancer Drug
Design, 13, 969 (1998); [c] M. L. López-Rodríguez, B. Benhamú, A.
Viso, M. J. Morcillo, M. Murcia, L. Orensanz, M. J. Alfaro and M. I.
Martín, Bioorg. Med. Chem., 7, 2271 (1999); [d] H. Akamatzu, K.
Fukase and S. Kusumoto, J. Comb. Chem., 4, 475 (2002); [e] K.
Kopan´ska, K., A. Najda, J. Z&dotebrowska, L. Chomicz, J. Piekarczyk,
P. Myjak and M. Bretner, Biorg. Med. Chem., 12, 2617 (2004).
[2a] J. V. Hernández, A. I. Oliva, L. Simón, F. M. Muñiz, A.
A. Mateos and J. R. Moran, J. Org. Chem., 68, 7513 (2003); [b] S.
Ünlü, S. Nacak Baytas, E. Kupeli and E. Yesilada, Archiv
Pharmazie, 336, 310 (2003); [c] I. Yildiz-Oren, B. Tekiner-Gulbas,
I. Yalcin, O. Temiz-Arpaci, E. Ak-Sener, N. Altanlar, Archiv
Pharmazie, 337, 402 (2004).
[14a] V. I. Cohen, J. Heterocyclic Chem., 16, 13 (1979); [b] A. D.
Redhouse, R. J. Thompson, B. J. Wakefield and J. A. Wardell,
[3a] G. Cristalli, S. Vittori, A. Eleuteri, R. Volpini, E. Camaioni,