Organometallics
Communication
employed.26,27 The reason for the observed decrease in activity
may in fact be due to sterics, rather than electronics.
Replacement of the CH3 groups in 1 with F in 2 leads to a
reduction in steric bulk of the aryl imido ligand. This likely
allows for more facile adoption of the syn-coplanar geometry
necessary for β-hydride elimination, thus promoting decom-
position via this route. The products of decomposition display
(7) Hughes, D.; Wheeler, P.; Ene, D. Olefin Metathesis in Drug
Discovery and Development - Examples from Recent Patent
Literature. Org. Process Res. Dev. 2017, 21, 1938−1962.
(8) Fustero, S.; Simon-Fuentes, A.; Barrio, P.; Haufe, G. Olefin
Metathesis Reactions with Fluorinated Substrates, Catalysts, and
Solvents. Chem. Rev. 2015, 115, 871−930.
(9) Schrock, R. R. Synthesis of Stereoregular Polymers through
Ring-Opening Metathesis Polymerization. Acc. Chem. Res. 2014, 47,
2457−2466.
(10) Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D.
C.; Davis, W. M.; Park, L.; DiMare, M.; Schofield, M.; Anhaus, J.;
Walborsky, E.; Evitt, E.; Kruger, C.; Betz, P. Further Studies of Imido
Alkylidene Complexes of Tungsten, Well-Characterized Olefin
Metathesis Catalysts with Controllable Activity. Organometallics
1990, 9, 2262−2275.
(11) Nguyen, S. B. T.; Grubbs, R. H.; Ziller, J. W. Syntheses and
Activities of New Single-Component, Ruthenium-Based Olefin
Metathesis Catalysts. J. Am. Chem. Soc. 1993, 115, 9858−9859.
(12) Montgomery, T. P.; Johns, A. M.; Grubbs, R. H. Recent
Advancements in Stereoselective Olefin Metathesis Using Ruthenium
Catalysts. Catalysts 2017, 7, 87−125.
1
no signals in H or 51V NMR, making identification difficult
and beyond the scope of this communication.
These results serve as an initial evaluation of CM with
vanadium alkylidenes. Notably, the compounds evaluated
demonstrate minimal to no undesirable isomerization, without
the need for additives. The evaluation of decomposition
pathways should serve as a guide for future developments in
CM with vanadium. In order to increase conversion and utility,
the metallocyclocutane intermediate generated from the
transient methylidene must be stabilized through the use of
bulkier ligands. Investigations into such species are now
underway and will be reported in due course.
(13) Herbert, M. B.; Grubbs, R. H. Z-Selective Cross Metathesis
with Ruthenium Catalysts: Synthetic Applications and Mechanistic
Implications. Angew. Chem., Int. Ed. 2015, 54, 5018−5024.
(14) Khan, R. K. M.; Torker, S.; Hoveyda, A. H. Readily Accessible
and Easily Modifiable Ru-Based Catalysts for Efficient and Z-Selective
Ring-Opening Metathesis Polymerization and Ring-Opening/Cross-
Metathesis. J. Am. Chem. Soc. 2013, 135, 10258−10261.
(15) Montgomery, T. P.; Ahmed, T. S.; Grubbs, R. H. Stereo-
retentive Olefin Metathesis: An Avenue to Kinetic Selectivity. Angew.
Chem., Int. Ed. 2017, 56, 11024−11036.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details and supporting spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
ORCID
Notes
The author declares no competing financial interest.
(16) Dumas, A.; Tarrieu, R.; Vives, T.; Roisnel, T.; Dorcet, V.; Basle,
O.; Mauduit, M. A Versatile and Highly Z-Selective Olefin Metathesis
Ruthenium Catalyst Based on a Readily Accessible N-Heterocyclic
Carbene. ACS Catal. 2018, 8, 3257−3262.
■
̈
(17) Occhipinti, G.; Hansen, F. R.; Tornroos, K. W.; Jensen, V. R.
Simple and Highly Z-Selective Ruthenium-Based Olefin Metathesis
Catalyst. J. Am. Chem. Soc. 2013, 135, 3331−3334.
̈
(18) Occhipinti, G.; Tornroos, K. W.; Jensen, V. R. Pyridine-
Stabilized Fast-Initiating Ruthenium Monothiolate Catalysts for Z-
Selective Olefin Metathesis. Organometallics 2017, 36, 3284−3292.
(19) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R.
H. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis.
J. Am. Chem. Soc. 2012, 134, 693−699.
ACKNOWLEDGMENTS
■
This work was supported by the Defense Threat Reduction
Agency Service Academy Research Initiative, Grant CB3260.
The summer salary for W.S.F. was provided by the Naval
Academy Research Council. W.S.F. wishes to thank Prof.
Shirley Lin and Prof. Amy H. Roy MacArthur for provision of a
Vacuum Atmospheres glovebox, as well as useful discussions.
(20) Rosebrugh, L. E.; Herbert, M. B.; Marx, V. M.; Keitz, B. K.;
Grubbs, R. H. Highly Active Ruthenium Metathesis Catalysts
Exhibiting Unprecedented Activity and Z-Selectivity. J. Am. Chem.
Soc. 2013, 135, 1276−1279.
(21) Bronner, S. M.; Herbert, M. B.; Patel, P. R.; Marx, V. M.;
Grubbs, R. H. Ru-Based Z-Selective Metathesis Catalysts with
Modified Cyclomediated Carbene Ligands. Chem. Sci. 2014, 5,
4091−4098.
(22) Endo, K.; Grubbs, R. H. Chelated Ruthenium Catalysts for Z
-Selective Olefin Metathesis. J. Am. Chem. Soc. 2011, 133, 8525−
8527.
(23) Lam, J. K.; Zhu, C.; Bukhryakov, K. V.; Muller, P.; Hoveyda, A.
H.; Schrock, R. R. Synthesis and Evaluation of Molybdenum and
Tungsten Monoaryloxide Halide Alkylidene Complexes for Z-
Selective Cross-Metathesis of Cyclooctene and Z-1,2-Dichloro-
ethylene. J. Am. Chem. Soc. 2016, 138, 15774−15783.
(24) Koh, M. J.; Nguyen, T. T.; Lam, J. K.; Torker, S.; Hyvl, J.;
Schrock, R. R.; Hoveyda, A. H. Molybdenum Chloride Catalysts for
Z-Selective Olefin Metathesis Reactions. Nature 2017, 542, 80−85.
(25) Koh, M. J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda,
A. H. Direct Synthesis of Z-Alkenyl Halides through Catalytic Cross-
Metathesis. Nature 2016, 531, 459−465.
(26) Nomura, K.; Hou, X. Synthesis of Vanadium-Alkylidene
Complexes and Their Use as Catalysts for Ring Opening Metathesis
Polymerization. Dalt. Trans. 2017, 46, 12−24.
REFERENCES
■
(1) Schrock, R. R.; Hoveyda, A. H. Molybdenum and Tungsten
Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts.
Angew. Chem., Int. Ed. 2003, 42, 4592−4633.
(2) Vougioukalakis, C. G.; Grubbs, R. H. Ruthenium-Based
Heterocyclic Carbene-Coordinated Olefin Metathesis. Chem. Rev.
2010, 110, 1746−1787.
(3) Hoveyda, A. H.; Zhugralin, A. R. The Remarkable Metal-
Catalysed Olefin Metathesis Reaction. Nature 2007, 450, 243−251.
(4) Nolan, S. P.; Clavier, H. Chemoselective Olefin Metathesis
Transformations Mediated by Ruthenium Complexes. Chem. Soc. Rev.
2010, 39, 3305−3316.
(5) Chen, Y.; Abdellatif, M. M.; Nomura, K. Olefin Metathesis
Polymerization: Some Recent Developments in the Precise Polymer-
izations for Synthesis of Advanced Materials (by ROMP, ADMET).
Tetrahedron 2018, 74, 619−643.
(6) Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H.
Recent Advances in Ruthenium-Based Olefin Metathesis. Chem. Soc.
Rev. 2018, 47, 4510−4544.
D
Organometallics XXXX, XXX, XXX−XXX