C. Della Monica et al. / Tetrahedron Letters 46 (2005) 4061–4063
4063
(3H, s, CH3Si–), 0.89 (9H, s, (CH3)3CSi–), 1.08 (3H, s,
CH3), 1.16 (3H, s, CH3), 1.31 (3H, s, CH3), 1.34 (1H, m,
H-3), 1.47 (1H, ddd, J = 4.5, 4.5, 13.6 Hz, H0-3), 1.73–1.79
(2H, m, H-2 and H0-2), 2.78 (1H, dd, J = 2.1, 22.4 Hz, H-
7), 3.04 (1H, dd, J = 5.8, 22.4 Hz, H0-7), 3.69 (3H, s,
–CO2CH3), 3.78 (3H, s, –CO2CH3), 4.17 (1H, dd, J = 5.8,
8.4 Hz, H-1), 5.70 (1H, dd, J = 2.1, 5.8 Hz, H-6). 13C
NMR (CDCl3, 100 MHz): d ꢀ3.0 (q), ꢀ2.6 (q), 18.9 (s),
21.7 (q), 26.4 (·3) (q), 26.8 (t), 28.5 (t), 31.3 (q), 32.2 (q),
35.4 (s), 36.1 (t), 46.3 (s), 51.9 (q), 52.5 (q), 74.1 (d), 119.0
(d), 126.6 (s), 148.0 (s), 148.8 (s), 166.4 (s), 169.2 (s).
EIMS: m/z 422, 365, 333, 305, 291, 259, 231, 199.
11. Howell, S. C.; Ley, S. V.; Mahon, M. J. Chem. Soc.,
Chem. Commun. 1981, 507–508.
In conclusion, we have completed the synthesis of 1(R)-
hydroxypolygodial (5), starting from a-ionone in 13
steps and 8% overall yield. An investigation on the
vanilloid activity of 5 is now in progress and the results
will be given in due course. This synthetic scheme offers
the possibility of preparing other correlated naturally
occurring dialdehydes, such as those isolated from
Drimys brasiliensis.16
Acknowledgements
The authors acknowledge financial support from Uni-
`
versita di Salerno and from MIUR-COFIN 2002 ꢁTaste
chemoreception: synthesis and structure–activity rela-
12. Jalali-Naini, M.; Guillerm, D.; Lallemand, J.-Y. Tetrahe-
dron 1983, 39, 749–758.
13. Mori, K.; Watanabe, H. Tetrahedron 1986, 42, 273–281.
tionship of taste active compoundsꢀ.
25
14. Physical data of compound 16: ½a ꢀ39.6 (c 1.0, CHCl3).
1H NMR (CDCl3, 400 MHz): d D0.04 (3H, s, CH3 Si–),
0.09 (3H, s, CH3Si–), 0.85 (3H, s, CH3), 0.90 (9H, s,
(CH3)3CSi–), 0.91 (3H, s, CH3), 0.99 (3H, s, CH3), 1.17
(1H, dd, J = 6.0, 10.6 Hz, H-5), 1.26 (1H, m, H-3), 1.43
(1H, ddd, J = 3.3, 3.3, 13.6 Hz, H0-3), 1.58 (1H, dddd,
J = 3.0, 11.2, 13.4, 13.6 Hz, H-2), 1.71 (1H, dddd, J = 3.3,
4.2, 4.2, 13.4 Hz, H0-2), 2.15–2.28 (2H, m, H-6 and H0-6),
3.21 (1H, m, H-9), 3.61 (3H, s, –CO2CH3), 3.66 (3H, s,
–CO2CH3), 3.74 (1H, dd, J = 4.2, 11.2 Hz, H-1), 7.02 (1H,
m, H-7). 13C NMR (CDCl3, 100 MHz): d ꢀ2.9 (q), ꢀ2.3
(q), 9.2 (q), 18.9 (s), 21.8 (q), 24.5 (t), 26.6 (·3) (q), 28.5
(t), 32.5 (s), 32.6 (q), 39.4 (t), 43.4 (s), 48.1 (d), 51.6 (q),
51.7 (q), 56.6 (d), 80.6 (d), 129.6 (s), 140.3 (d), 167.3 (s),
173.3 (s). EIMS: m/z 424, 367, 335, 205, 171, 157, 145,
References and notes
1. Jansen, B. J. M.; de Groot, A. Nat. Prod. Rep. 2004, 21,
449–477, and references therein.
2. Szallasi, A.; Biro, T.; Modarres, S.; Garlaschelli, L.;
Petersen, M.; Klusch, A.; Vidari, G.; Jonassohn, M.; De
Rosa, S.; Sterner, O.; Blumberg, P. M.; Krause, J. E. Eur.
J. Pharmacol. 1998, 356, 81–89.
3. (a) Taniguchi, M.; Adachi, T.; Oi, S.; Kimura, A.;
Katsumura, S.; Isoe, S.; Kubo, I. Agric. Biol. Chem.
1984, 48, 73–78; (b) Cimino, G.; Spinella, A.; Sodano, G.
Tetrahedron Lett. 1984, 25, 4151–4152.
4. Cimino, G.; Sodano, G.; Spinella, A. Tetrahedron 1987,
43, 5401–5410.
5. De Rosa, S.; Puliti, R.; Crispino, A.; De Giulio, A.;
Mattia, C. A.; Mazzarella, L. J. Nat. Prod. 1994, 57, 256–
262.
6. Tozyo, T.; Yasuda, F.; Hiroshi, N.; Tada, H. J. Chem.
Soc., Perkin Trans. 1 1992, 1859–1866.
7. Corey, E. J.; Bakshi, R. K.; Shibata, S. J. Am. Chem. Soc.
1987, 109, 5551–5553; Corey, E. J.; Helal, C. J. Angew.
Chem., Int. Ed. 1998, 37, 1986–2012.
131.
31
D
15. Physical data of 1(R)-hydroxypolygodial (5): ½a ꢀ175.1
(c 1.0, CHCl3). 1H NMR (CDCl3, 400 MHz): d 0.88 (3H, s,
CH3), 0.91 (3H, s, CH3), 0.92 (3H, s, CH3), 1.24 (1H, ddd,
J = 4.0, 13.5, 13.5 Hz, H-3), 1.44 (1H, ddd, J = 3.2, 3.2,
13.5 Hz, H0-3), 1.54 (1H, dd, J = 5.1, 11.5 Hz, H-5), 1.57–
1.72 (2H, m, H-2 and H0-2), 2.24 (1H, br dd, J = 11.5,
20.4 Hz, H-6), 2.51 (1H, ddd, J = 5.1, 5.1, 20.4 Hz, H0-6),
3.63 (1H, dd, J = 4.4, 10.9 Hz, H-1), 3.71 (1H, br s, H-9),
8. Nicolaou, K. C.; Li, W. S. J. Chem. Soc., Chem. Commun.
1985, 421.
7.04 (1H, m, H-7), 9.39 (1H, s, OHCC-8), 9.93 (1H, d,
J = 1.2 Hz, OHCC-9).
13
C NMR (CDCl3, 100 MHz): d
9. The enantiomeric excess was determined by HPLC analy-
sis (Chiralcel OD, 1% 2-propanol in hexane, 1 mL/min, tR
(R): 10.37 min, tR (S): 9.21 min).
15.1 (q), 21.9 (q), 25.5 (t), 27.7 (t), 32.2 (q), 32.4 (s), 39.5 (t),
43.0 (d), 44.0 (s), 54.5 (d), 75.6 (d), 137.9 (s), 152.5 (d),
192.6 (d), 202.8 (d). ESMS: m/z 249 [MꢀH]ꢀ.
25
10. Physical data of compound 13: ½a ꢀ50.7 (c 0.95, CHCl3).
16. Vichnewski, W.; Kulanthaivel, P.; Herz, W. Phytochem-
istry 1986, 25, 1476–1478.
D
1H NMR (CDCl3, 400 MHz): d 0.06 (3H, s, CH3Si–), 0.09