Communication
Dalton Transactions
We can see that the uranium atom of the uranyl ion prefers to
be five-coordinated by four oxygen atoms respectively from the
PvO moiety, the backbone, one water molecule, and one
nitrogen atom on the backbone. The calculated bond lengths
range from 2.267 to 2.830 Å, respectively. The relatively long
interaction distance, 2.830 Å, between uranium and water
would be attributed to the steric effect, which inhibits the
closer approaching of water to uranium. In contrast, the carbo-
nyl oxygen atoms play a more important role in attracting the
uranyl ion with much shorter U–O bonds of 2.267 and 2.433 Å.
The charge density distribution within the plane consisting of
the uranium atom and two carbonyl oxygen atoms is also
shown in Fig. 6. Obviously, the electron density overlaps
around the U–O and U–N bonds with the O/N atoms from the
backbone, which indicates the formation of coordination
bonds. Our theoretical calculations suggested that the remark-
able performance of COF-IHEP11 can be attributed to the
3 M. Carboni, C. W. Abney, S. Liu and W. Lin, Chem. Sci.,
2013, 4, 2396–2402.
4 G. Tian, J. X. Geng, Y. D. Jin, C. L. Wang, S. Q. Li, Z. Chen,
H. Wang, Y. S. Zhao and S. J. Li, J. Hazard. Mater., 2011,
190, 442–450.
5 Y. B. Sun, S. B. Yang, Y. Chen, C. C. Ding, W. C. Cheng and
X. K. Wang, Environ. Sci. Technol., 2015, 49, 4255–4262.
6 B. Y. Li, Q. Sun, Y. M. Zhang, C. W. Abney, B. Aguila,
W. B. Lin and S. Q. Ma, ACS Appl. Mater. Interfaces, 2017, 9,
12511–12517.
7 C. S. Diercks and O. M. Yaghi, Science, 2017, 355, 923–930.
8 C. R. DeBlase, K. E. Silberstein, T. T. Truong, H. D. Abruna
and W. R. Dichtel, J. Am. Chem. Soc., 2013, 135, 16821–
16824.
9 M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina,
A. Hartschuh, P. Knochel and T. Bein, Angew. Chem., Int.
Ed., 2013, 52, 2920–2924.
synergistic effect of carbonyl functional groups on the COF 10 X. Hang, J. J. Huang, C. Yuan, Y. Liu and Y. Cui, J. Am.
skeleton and phosphonate active sites as side arms in the COF
channels.
In summary, we herein report an operational strategy for
enhancing U(VI) removal from highly acidic radioactive waste
Chem. Soc., 2018, 140, 892–895.
11 Q. R. Fang, J. H. Wang, S. Gu, R. B. Kaspar, Z. B. Zhuang,
J. Zheng, H. X. Guo, S. L. Qiu and Y. S. Yan, J. Am. Chem.
Soc., 2015, 137, 8352–8355.
by
a radiation resistant phosphonate-functionalized COF 12 Y. Li, X. H. Guo, X. F. Li, M. C. Zhang, Z. M. Jia, Y. Deng,
through the synergistic action of the skeleton and side arm.
Considering the acid and radiation-resistant nature of
Y. Tian, S. J. Li and L. J. Ma, Angew. Chem., Int. Ed., 2020,
59, 4168–4175.
COF-IHEP11, it can be a promising sorbent candidate for 13 Q. Sun, B. Aguila, L. D. Earl, C. W. Abney, L. Wojtas,
intense radiation actinide capture from wastewater. Further
P. K. Thallapally and S. Q. Ma, Adv. Mater., 2018, 30,
work to fabricate more effective COF sorbents by varying the
1705479.
skeleton and lateral side techniques, and also to emerge as an 14 L. W. He, S. T. Liu, L. Chen, X. Dai, J. Li, M. X. Zhang,
excellent scaffold for applications in the nuclear fuel cycle, is
in progress.
F. Y. Ma, C. Zhang, Z. X. Yang, R. H. Zhou, Z. F. Chai and
S. Wang, Chem. Sci., 2019, 10, 5183–5184.
15 X. H. Xiong, Z. W. Yu, L. Gong, Y. Tao, Z. Gao, L. Wang,
W. H. Yin, L. Yang and F. Luo, Adv. Sci., 2019, 6, 1900547.
16 W.-R. Cui, C.-R. Zhang, W. Jiang, F.-F. Li, R.-P. Liang, J. Liu
and J.-D. Qiu, Nat. Commun., 2020, 11, 436.
Conflicts of interest
There are no conflicts to declare.
17 Y. Yuan, Q. H. Meng, M. Faheem, Y. J. Yang, Z. N. Li,
Z. Y. Wang, D. Deng, F. X. Sun, H. M. He, Y. H. Huang,
H. Y. Sha and G. S. Zhu, ACS Cent. Sci., 2019, 5, 1432–1439.
18 X. F. Wang, Y. Y. Chen, L. P. Song, Z. Fang, J. Zhang,
F. N. Shi, Y. W. Lin, Y. K. Sun, Y. B. Zhang and J. Rocha,
Angew. Chem., Int. Ed., 2019, 58, 18808–18812.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (No. U2067212, 21806167, 21777161), 19 M. Y. Xu, T. Wang, P. Gao, L. Zhao, L. Zhou and D. B. Hua,
and Youth Innovation Promotion Association of CAS
(21017020).
J. Mater. Chem. A, 2019, 7, 11214–11222.
20 J. P. Yu, L. Y. Yuan, S. Wang, J. H. Lan, L. R. Zheng, C. Xu,
J. Chen, L. Wang, Z. W. Huang, W. Q. Tao, Z. R. Liu,
Z. F. Chai, J. K. Gibson and W. Q. Shi, CCS Chem., 2019, 1,
286–295.
21 Y. Wang, M. S. Xie, J. H. Lan, L. Y. Yuan, J. P. Yu, J. Q. Li,
J. Peng, Z. F. Chai, J. K. Gibson, M. L. Zhai and W. Q. Shi,
Chem., 2020, 6, 2796–2809.
Notes and references
1 Z. Li, F. Chen, L. Yuan, Y. Liu, Y. Zhao, Z. Chai and W. Shi,
Chem. Eng. J., 2012, 210, 539–546.
2 C. Degueldre, J. Bertsch, G. Kuri and M. Martin, Energy 22 Y. W. Zhang, X. C. Shen, X. Feng, H. Xia, Y. Mu and
Environ. Sci., 2011, 4, 1651–1661.
X. M. Liu, Chem. Commun., 2016, 52, 11088–11091.
3796 | Dalton Trans., 2021, 50, 3792–3796
This journal is © The Royal Society of Chemistry 2021