Pranab K. Shyam et al.
COMMUNICATIONS
1
6
00 MHz): d=144.5, 135.3, 132.2, 129.0, 128.5, 128.4, 125.3,
6.0; HR-MS (EI): m/z=232.0557 ([M] ), calcd. for
Vaidya, G. E. Garrett, D. A. Pratt, Org. Biomol. Chem.
2011, 9, 3320–3330; k) R. M. Mallorquin, G. Vincent, E.
Derat, M. Malacria, J.-P. Goddard, L. Fensterbank,
Aust. J. Chem. 2013, 66, 346–353; l) C. Chatgilialoglu,
in: The Chemistry of Sulphones and Sulphoxides, (Eds.:
S. Patai, Z. Rappoport, C. J. M. Stirling), Wiley & Sons,
Ltd., Chichester, New York, Brisbane, Toronto, Singa-
pore, 1988, pp 1081–1087.
+
C H O S: 232.0558; FT-IR (neat): n=3062, 2945, 1598,
1
1
3
12
2
À1
476, 1132 cm .
Supporting Information
Detailed experimental procedures and spectra of products
are provided in the Supporting Information.
[
4] For recent review articles on copper-catalyzed aerobic
oxidative coupling reactions, see: a) W. Shi, C. Liu, A.
Lei, Chem. Soc. Rev. 2011, 40, 2761–2776; b) K.
Hirano, M. Miura, Chem. Commun. 2012, 48, 10704–
Acknowledgements
10714; c) S. E. Allen, R. R. Walvoord, R. Padilla-Sali-
This study was supported by the Korea CCS R&D Center
nas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234–6458.
(
KCRC) grant from the Korea Government (Ministry of
Education, Science and Technology; No.
015M1A8A1048886), C1 gas refinery program through Na-
tional Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT Future Planning (No.
015M3D3A1065436), and the Human Resources Develop-
[5] For selected articles on copper-catalyzed aerobic oxida-
tive coupling reactions, see: a) T. Hamada, X. Ye, S. S.
Stahl, J. Am. Chem. Soc. 2008, 130, 833–835; b) Y. Guo,
G. Wang, L. Chen, P. Xu, Y. Zhao, Y. Zhou, L.-B. Han,
J. Am. Chem. Soc. 2009, 131, 7956–7957; c) L. Chu, F.-
L. Qing, J. Am. Chem. Soc. 2010, 132, 7262–7263; d) S.
Guo, B. Qoan, Y. Xie, C. Xia, H. Huang, Org. Lett.
2011, 13, 522–525; e) X. Jin, K. Yamaguchi, N. Mizuno,
Chem. Commun. 2012, 48, 4974–4976; f) L. Wang, H.
Huang, D. L. Priebbenow, F.-F. Pan, C. Bolm, Angew.
Chem. 2013, 125, 3562–3564; Angew. Chem. Int. Ed.
2
&
2
ment of the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) grant funded by the Korea govern-
ment Ministry of Trade, Industry
0154010200820).
&
Energy (No.
2
2
013, 52, 3478–3480; g) Y. Yang, W. Dong, Y. Guo,
R. M. Rioux, Green Chem. 2013, 15, 3170–3175; NÀP
References
bond: h) J. Fraser, L. J. Wilson, R. K. Blundell, C. J.
Hayes, Chem. Commun. 2013, 49, 8919–8921; PÀS
[
1] a) A. Attar, W. H. Corcoran, Ind. Eng. Chem. Prod.
Res. Dev. 1976, 17, 102–109; b) F. Zannikos, E. Lois, S.
Stournas, Fuel Process. Technol. 1995, 42, 35–45;
c) D. J. Procter, J. Chem. Soc. Perkin Trans. 1 2001,
bond: i) G. Kumaraswamy, R. Raju, Adv. Synth. Catal.
2
014, 356, 2591–2598; NÀS bond: j) N. Taniguchi, Syn-
lett 2007, 1917–1920; k) N. Taniguchi, Eur. J. Org.
Chem. 2010, 2670–2673; l) X. Tang, L. Huang, C. Qi, X.
Wu, W. Wu, H. Jiang, Chem. Commun. 2013, 49, 6102–
3
7
1
2
35–354; d) D. Y. Sorokin, Microbiology 2003, 72, 725–
39; e) P. De Filippis, M. Scarsella, Energy Fuels 2003,
7, 1452–1455; f) T. Rohwerder, W. Sand, Eng. Life Sci.
007, 7, 301–309; g) E. Wojaczy n´ ska, J. Wojaczy n´ ski,
6104; m) X. Huang, J. Wang, Z. Ni, S. Wang, Y. Pan,
Chem. Commun. 2014, 50, 4582–4584 (copper-mediated
reaction); n) C. Lee, X. Wang, H.-Y. Jang, Org. Lett.
Chem. Rev. 2010, 110, 4303–4356.
2
015, 17, 1130–1133; SÀS bond: o) N. Taniguchi, Eur. J.
[
2] For selected articles on sulfinyl radical formation from
thiol oxidation, see: a) M. D. Sevilla, D. Becker, S.
Swarts, J. Herrington, Biochem. Biophys. Res.
Commun. 1987, 144, 1037–1042; b) C. C. Winterbourn,
D. Metodiewa, Free Radical Biol. Med. 1999, 27, 322–
Org. Chem. 2014, 5691–5694.
[
[
6] For reviews on the synthesis and applications of sulfi-
nates, see: a) I. Fernµndez, N. Khiar, Chem. Rev. 2003,
103, 3651–3705; b) M. T. Robak, M. A. Herbage, J. A.
Ellman, Chem. Rev. 2010, 110, 3600–3740.
328; c) M. Benrahmoune, P. ThØrond, Z. Abedinzadeh,
7] For the recent synthetic applications of sulfinate esters,
see: a) F. Yuste, A. H. Linares, V. M. Mastranzo, B.
Ortiz, R. Sµnchez-Obregón, A. Fraile, J. L. G. Ruano, J.
Org. Chem. 2011, 76, 4635–4644; b) J. L. G. Ruano, A.
Parra, L. Marzo, F. Yuste, V. M. Mastranzo, Tetrahe-
dron 2011, 67, 2905–2910.
[8] For recent enantioselective sulfinyl ester syntheses, see:
a) J. W. Evans, M. B. Fierman, S. J. Miller, J. A. Ellman,
J. Am. Chem. Soc. 2004, 126, 8134–8135; b) H. M.
Peltier, J. W. Evans, J. A. Ellman, Org. Lett. 2005, 7,
1733–1736; c) S. Nakamura, M. Tateyama, H. Sugimo-
to, M. Nakagawa, Y. Watanabe, N. Shibata, T. Toru,
Chirality 2005, 17, 85–88; d) M. K. Syed, M. Casey, Eur.
J. Org. Chem. 2011, 7207–7214; e) Y. Zhang, S. Chitale,
N. Goyal, G. Li, Z. S. Han, S. Shen, S. Ma, N. Grinberg,
H. Lee, B. Z. Lu, C. H. Senanayake, J. Org. Chem.
2012, 77, 690–695.
Free Radical Biol. Med. 2000, 29, 775–782; d) B.
Cardey, M. Enescu, ChemPhysChem 2009, 10, 1642–
1648; e) L. Tan, Y. Xia, J. Am. Soc. Mass Spectrom.
2013, 24, 534–542.
[
3] a) F. Freeman, C. N. Angeletakis, W. J. Pietro, W. J.
Hehre, J. Am. Chem. Soc. 1982, 104, 1161–1165; b) F.
Freeman, Chem. Rev. 1984, 84, 117–135; c) Y. Guo,
W. S. Jenks, J. Org. Chem. 1995, 60, 5480–5486; d) Y.
Guo, W. S. Jenks, J. Org. Chem. 1997, 62, 857–864;
e) A. P. Darmanyan, D. D. Gregory, Y. Guo, W. S.
Jenks, J. Phys. Chem. A 1997, 101, 6855–6863; f) D. D.
Gregory, W. S. Jenks, J. Phys. Chem. A 2003, 107, 3414–
3
423; g) R. S. Grainger, B. Patel, B. M. Kariuki, Angew.
Chem. 2009, 121, 4926–4929; Angew. Chem. Int. Ed.
009, 48, 4832–4835; h) A. Latorre, I. López, V. Ramír-
2
ez, S. Rodríguez, J. Izquierdo, F. V. Gonzµlez, C.
Vicent, J. Org. Chem. 2012, 77, 5191–5197; i) J. A.
Souto, W. Lewis, R. A. Stockman, Chem. Commun.
[9] For selected articles on the synthesis of sulfinates, see:
2014, 50, 12630–12632; j) P. T. Lynett, K. Butts, V.
a) I. B. Douglass, J. Org. Chem. 1965, 30, 633–635;
6
0
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2016, 358, 56 – 61