Chemical Science
Edge Article
decient arenes (Table 1). While previous methods demonstrate
efficient amination of arenes no more electron poor than bro-
mobenzene to provide unprotected anilines, our method is
suitable for the amination of arenes such as nitrobenzene (2),
methyl phenyl sulfone (3), and benzonitrile (4). Reactivity is
maintained with electron-rich arenes as well (see ESI†). Most
halides are tolerated (5, 10, 11, 13), as are tertiary amines (11)
and benzylic C–H bonds (7, 13). Amination can occur on ve-
membered heterocycles (6) and on benzofused ve- and six-
membered heterocycles (7, 9). However, no amination has
been observed on six-membered heterocycles. While esters (6,
9), amides (11, 13), nitriles (10, 4), and sulfonamides (8) are
suitable substrates, aldehydes, ketones, and alkenes typically
undergo side reactions without appreciable ring amination.
While for some densely functionalized substrates, no or low
2 F. Minisci, Synthesis, 1973, 1–24.
3 R. Bolton and G. H. Williams, Chem. Soc. Rev., 1986, 15, 261–
289.
4 A. Studer, Angew. Chem., Int. Ed., 2012, 51, 8950–8958.
´
5 R. Rossi, M. E. Buden and J. F. Guastavino, in Arene
Chemistry: Reaction Mechanisms and Methods for Aromatic
Compounds, ed. J. Mortier, John Wiley & Sons, Hoboken,
2016, pp. 219–242.
¨
6 J. Borgel, L. Tanwar, F. Berger and T. Ritter, J. Am. Chem. Soc.,
2018, 140, 16026–16031.
7 A. Clerici, F. Minisci, M. Perchinunno and O. Porta, J. Chem.
Soc., Perkin Trans. 2, 1974, 416–419.
8 M. Tiecco, Pure Appl. Chem., 1981, 53, 239–358.
9 J. Fossey, D. Lefort and J. Sorba, Free Radicals in Organic
Chemistry, John Wiley & Sons, New York, 1995.
conversion of starting material was observed (see Table S6†), we 10 A. Bravo, H.-R. Bjørsvik, F. Fontana, L. Liguori, A. Mele and
demonstrated the utility of our method to late-stage function- F. Minisci, J. Org. Chem., 1997, 62, 7128–7136.
alization of drug molecules such as moclobemide and runa- 11 J. G. Hoggett, R. B. Moodie, J. R. Penton and K. Schoeld,
mide, which were aminated to give derivatives 11 and 13,
respectively.
Nitration and aromatic reactivity, Cambridge University
Press, New York, 1971.
12 G. A. Olah, R. Malhotra and S. C. Narang, Nitration Methods
and Mechanism, VCH Publishers, Inc., New York, 1989.
13 H.-U. Blaser, H. Steiner and M. Studer, ChemCatChem, 2009,
1, 210–221.
14 L. Lu, H. Liu and R. Hua, Org. Lett., 2018, 20, 3197–3201.
15 M.-L. Louillat and F. W. Patureau, Chem. Soc. Rev., 2014, 43,
901–910.
16 J. Jiao, K. Murakami and K. Itami, ACS Catal., 2016, 6, 610–
633.
17 H. Kim and S. Chang, ACS Catal., 2016, 6, 2341–2351.
18 L. Legnani, B. N. Bhawal and B. Morandi, Synthesis, 2017, 49,
776–789.
Conclusions
We present a practical aromatic C–H amination reaction and
provide a mechanistic framework for understanding the effect
of the solvent HFIP on the reaction. Though aminiumyl radical
additions have been known for over half a century, the mech-
anistic insight presented herein has resulted in a previously
unrealized reaction utility. HFIP is proposed to comprise
a unique solvent environment that increases the electrophilicity
of multiple cationic species in the reaction to provide a drasti-
cally expanded substrate scope. We anticipate that our ndings
will inform further investigation and development of radical
addition reactions for aromatic C–H functionalization.
19 Y. Park, Y. Kim and S. Chang, Chem. Rev., 2017, 117, 9247–
9301.
20 G. B. Boursalian, M.-Y. Ngai, K. N. Hojczyk and T. Ritter,
J. Am. Chem. Soc., 2013, 135, 13278–13281.
21 L. J. Allen, P. J. Cabrera, M. Lee and M. S. Sanford, J. Am.
Chem. Soc., 2014, 136, 5607–5610.
Conflicts of interest
There are no conicts to declare.
´
22 K. Foo, E. Sella, I. Thome, M. D. Eastgate and P. S. Baran,
J. Am. Chem. Soc., 2014, 136, 5279–5282.
23 H. Kim, T. Kim, D. G. Lee, S. W. Roh and C. Lee, Chem.
Commun., 2014, 50, 9273–9276.
24 L. Song, L. Zhang, S. Luo and J.-P. Cheng, Chem.–Eur. J.,
2014, 20, 14231–14234.
Acknowledgements
We thank Claudia Kleinlein for assistance with electro-
chemistry, and Dr Shao-Liang Zheng and Claudia Kleinlein
for assistance with X-ray crystallography. J. B. acknowledges the
Fond der Chemischen Industrie for funding. We acknowledge
UCB Pharma for funding.
25 T. W. Greulich, C. G. Daniliuc and A. Studer, Org. Lett., 2015,
17, 254–257.
26 T. Kawakami, K. Murakami and K. Itami, J. Am. Chem. Soc.,
2015, 137, 2460–2463.
27 G. B. Boursalian, W. S. Ham, A. R. Mazzotti and T. Ritter,
Nat. Chem., 2016, 8, 810–815.
28 W. S. Ham, J. Hillenbrand, J. Jacq, C. Genicot and T. Ritter,
Angew. Chem., Int. Ed., 2019, 58, 532–536.
Notes and references
‡ Cambridge Crystallographic Data Centre (CCDC) number of compound 1:
1545194.
§ A mixture of MeCN and H2O, as was used in ref. 33, would not have the same
effect on 1, as the solvent can both donate and accept hydrogen bonds, and the
zwitterionic nature of the reagent (HOSA) used by Minisci (ref. 32) mitigates any
such disruption of ion pairing.
¨
29 S. Rossler, B. Jelier, P. Tripet, A. Shemet, G. Jeschke, A. Togni
and E. M. Carreira, Angew. Chem., Int. Ed., 2019, 58, 526–531.
30 N. A. Romero, K. A. Margrey, N. E. Tay and D. A. Nicewicz,
Science, 2015, 349, 1326.
1 N. Kuhl, M. N. Hopkinson, J. Wencel-Delord and F. Glorius,
Angew. Chem., Int. Ed., 2012, 51, 10236–10254.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2019