result in low yields, thereby limiting their potential practical
applications. In this regard, the solid-phase synthesis of
dendrimers appears to be a promising alternative. Although
units, resulting in two-faced Janus dendritic molecules
(Figure 1). In addition, these Janus dendrimers and reaction
7
solid-phase synthesis techniques have been applied success-
8
fully in the synthesis of a number of dendrimers, the
heterogeneous reaction nature of this strategy might result
in some problems, such as relatively low reactivity, extended
reaction time, and difficulty in characterization of dendritic
hybrids.
As an alternative, soluble supports have recently been used
9
in liquid-phase organic synthesis (LPOS). In this case, the
similar reaction conditions of classic orgainic chemistry are
reinstated, and yet product purification is still facilitated
through application of macromolecular properties. Over the
past decade, this methodology has achieved great success
in organic synthesis.10 To the best of our knowledge,
however, only two research groups reported the synthesis
of dendrimers or dendritic hybrids via LPOS by using linear
polymer or oligomer as supports. Fr e´ chet and co-workers
first reported the synthesis of dendritic linear hybrids using
linear poly(ethylene glycols) (PEGs) as the support via
LPOS.11 Most recently, Ahn et al. reported the synthesis of
12
alphatic ester dendrimers on linear polystyrene support. To
date, synthesis of codendrimers by using dendron support
via LPOS has not been reported in the literature.
Figure 1. Structure of the third-generation Janus dendrimer.
The concept of codendrimer was first established by
Hawker and Fr e´ chet in the synthesis of segmented and layed
intermediates were purified by simple solvent precipitation
without the need for column chromatography. Their potential
use as a novel soluble support for LPOS has been demon-
strated with the Pd-catalyzed Suzuki coupling reaction.
The Fr e´ chet-type poly(aryl ether) dendron was chosen as
support because of its high inertness toward organic reagents
and good accessibility. Synthesis and structure of the Janus
dendrimers are outlined in Scheme 1. The third-generation
Fr e´ chet’s dendron 1 was prepared according to the reported
13
codendrimers based on ester and ether monodendrons. Due
to their unique structures and properties, codendrimers have
14
been attracting great attention. So far, a number of diblock
codendrimers have been reported. However, almost all these
dendrimers were synthesized step by step via conventional
solution synthesis and therefore suffered from time-consum-
ing purifications and low yields. In relation to our interest
in applications of functionalized organometallic dendrimers
as homogeneous catalysts,15 we wish to report here a new
6
c
convergent approach. Commercially available dimethyl
-hydroxylisophthalate 2 was used as the growth unit for
5
kind of codendrimers via LPOS by using the third-generation
6c
16
the esterification with the hydroxy group of 1 under standard
Mitsunobu reaction conditions. The resulting dendritic ester
was then reduced by LiAlH to provide the G G -CH OH
4 3 1 2
Fr e´ chet-type poly(aryl ether) dendron as the support.
These dendrimers combine two functionally different surface,
nonpolar benzyl ether moieties and polar benzyl alcohol
(
7) (a) For a review, see: Dahan, A.; Portnoy, M. J. Polym. Sci., Part
A: Polym. Chem. 2004, 43, 235. (b) Tam, J. P. Proc. Natl. Acad. Sci. U.S.A.
988, 85, 5409. (b) Uhrich, K. E.; Boegeman, S.; Fr e´ chet, J. M. J.; Turner,
(14) Selected recent examples for codendrimers, see: (a) Yang, M.;
Wang, W.; Yuan, F.; Zhang, X.; Li, J.; Liang, F.; He, B.; Minch, B.; Wegner,
G. J. Am. Chem. Soc. 2005, 127, 15107. (b) Lee, C. C.; Gillies, E. R.; Fox,
M. E.; Guillaudeu, S. J.; Fr e´ chet, J. M. J.; Dy, E. E.; Szoka, F. C.; Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 16649. (c) Chen, Y. C.; Wu, T. F.; Jiang,
L.; Deng, J. G.; Liu, H.; Zhu, J.; Jiang, Y. Z. J. Org. Chem. 2005, 70,
1006. (d) Percec, V.; Imam, M. R.; Bera, T. K.; Balagurusamy, S. K. V.;
Peterca, M.; Heiney, P. A. Angew. Chem., Int. Ed. 2005, 44, 4739. (e) Lee,
J. W.; Kim, B. K.; Kim, J.-H.; Shin, W. S.; Jin, S.-H. J. Org. Chem. 2006,
71, 4988. (f) Bury, I.; Heinrich, B.; Bourgogne, C.; Guillon, D.; Donnio,
B. Chem.-Eur. J. 2006, 12, 8396. (g) Ropponen, J.; Nummelin, S.;
Rissanen, K. Org. Lett. 2004, 6, 2495. (h) Gillies, E. R.; Fr e´ chet, J. M. J.
J. Org. Chem. 2004, 69, 46. (i) Tomalia, D. A.; Pulgam, V. R.; Swanson,
D. R.; Huang, B. PCT Int. Appl. WO 06105043, 2006.
(15) (a) Fan, Q. H.; Chen, Y. M.; Chen, X. M.; Jiang, D. Z.; Xi F.;
Chan, A. S. C. Chem. Commun. 2000, 789. (b) Deng, G. J.; Fan, Q. H.;
Chen, X. M.; Liu, D. S.; Chan, A. S. C. Chem. Commun. 2002, 1570. (c)
Yi, B.; Fan, Q. H.; Deng, G. J.; Li, Y. M.; Qiu, L. Q.; Chan, A. S. C. Org.
Lett. 2004, 6, 1361. (d) Deng, G. J.; Yi, B.; Huang, Y. Y.; Tang, W. J.; He,
Y. M.; Fan, Q. H. AdV. Synth. Catal. 2004, 346, 1440. (e) Wu, L.; Li, B.;
Huang, Y.; Zhou, H.; He, Y.; Fan, Q. H. Org. Lett. 2006, 8, 3605. (f) Wang,
Z. J.; Deng, G. J.; Li, Y.; He, Y. M.; Tang, W. J.; Fan, Q. H. Org. Lett.
2007, 9, 1243.
1
S. R. Polym. Bull. 1991, 25, 551. (c) Swali, V.; Wells, N. J.; Langley, G.
J.; Bradley, M. J. Org. Chem. 1997, 62, 4902.
(
8) Selected recent examples, see: (a) Bourque, S. C.; Maltais, F.; Xiao,
W. J.; Tardif, O.; Alper, H.; Arya, P.; Manzer, L. E. J. Am. Chem. Soc.
999, 121, 3035. (b) Bourque, S. C.; Alper, H.; Manzer, L. E.; Arya, P. J.
1
Am. Chem. Soc. 2000, 122, 956. (c) Fromont, C.; Bradley, M. Chem.
Commun. 2000, 283. (d) Basso, A.; Evans, B.; Pegg, N.; Bradley, M. Chem.
Commun. 2001, 697. (e) Dahan, A.; Portnoy, M. Macromolecules 2003,
3
3
6, 1034. (f) Dahan, A.; Dimant, H.; Portnoy, M. J. Comb. Chem. 2004, 6,
05.
(9) For reviews, see: (a) Gravert, D. J.; Janda, K. D. Chem. ReV. 1997,
9
7, 489. (b) Toy, P. H.; Janda, K. D. Acc. Chem. Res.2000, 33, 546. (c)
Miao, W.; Chan, T. H. Acc. Chem. Res. 2006, 39, 897.
10) Selected recent examples, see: (a) Annunziata, R.; Benaglia, M.;
(
Cinquini, M.; Cozzi, F. Chem.-Eur. J. 2000, 6, 133. (b) Hebel, A.; Haag,
R. J. Org. Chem. 2002, 67, 9452. (c) Guo, H. C.; Wang, Z.; Ding, K. L.
Synthesis 2005, 1061.
(
11) Ihre, H.; Padilla De Jes u´ s, O. L.; Fr e´ chet, J. M. J. J. Am. Chem.
Soc. 2001, 123, 5908.
12) Yim, S.-H.; Huh, J.; Ahn, C.-H.; Park, T. G. Macromolecules 2007,
0, 205.
13) Hawker, C. J.; Fr e´ chet, J. M. J. J. Am. Chem. Soc. 1992, 114, 8405.
(
4
(16) The poly(aryl ether) dendrons have been synthesized on solid
support, see ref. 8d and e.
(
2262
Org. Lett., Vol. 9, No. 12, 2007