4
Tetrahedron Letters
10. McLaren, J. W.; Jarnis, K. E.; Gray, A. L.; Houk, R. S. In Handbook of
Inductively Coupled Plasma Mass Spectrometry, eds.; Blackie & Son
Ltd.: Glasgow, 1992, p. 266.
8
6
4
2
0
11. Dymott, T. M. In Quality Assurance in Environmental Monitoring,
Subramaniam, G. eds.; VCH: Weinheim, 1995, p. 114.
12. (a) Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9, 5039–5042; (b)
Noh, J. Y.; Park, G. J.; Na, Y. J.; Jo, H. Y.; Lee, S. A.; Kim, C. Dalton
Trans. 2014, 43, 5652–5656; (c) Goswami, S.; Chakraborty, S.; Paul, S.;
Halder, S.; Panja, S.; Kanti, S.; Mukhopadhyay, K. Org. Biomol. Chem.
2014, 12, 3037–3044.
13. (a) Weng, Y. Q.; Yue, F.; Zhong, Y. R.; Ye, B. H. Inorg. Chem. 2007, 46,
7749–7755; (b) Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I.; Hong, C.
S.; Kim, J. W.; Yan, S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. J. Am.
Chem. Soc. 2009, 131, 2008–2012.
y = 1.2948x + 0.1668
R2 = 0.9983
14. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386–
7387.
0
1
2
3
4
5
[Cu2+] (µM)
15. (a) Chen, X.; Ma, H. Anal. Chim. Acta 2006, 575, 217–222; (b) Yuan, L.;
Chen, B.; Xie, Y. Org. Lett. 2012, 14, 432–435; (c) Fan, J.; Zhan, P.; Hu,
M.; Sun, W.; Tang, J.; Wang, J.; Sun, S.; Song, F.; Peng, X. Org. Lett.
2013, 15, 492–495; (d) Shirasaki, Y.; Kamino, S.; Tanioka, M.;
Watanabe, M.; Takeuchi, Y.; Komeda, S.; Enomoto, S. Chem. Asian J.
2013, 8, 2609–2613; (e) Cheng, X. W.; Zhou, Y.; Fang, Y.; Ruia, Q. Q.;
Yao, C. RSC Adv. 2015, 5, 19465–19469; (f) Liu, K.; Shang, H.; Meng,
F.; Liu, Y.; Lin, W. Talanta 2016, 147, 193–198; (g) Liu, Y.; Su, Q.;
Chen, M.; Dong, Y.; Shi, Y.; Feng, W.; Wu, Z.-Y.; Li, F. Adv. Mater.
2016, 28, 6625–6630.
Figure 5. Concentration-dependent fluorescence signaling of Cu2+ by probe
1 in simulated semiconductor wastewater. [1] = 5.0 × 10–6 M, [Cu2+] = 0−5.0
× 10–6 M in a mixture of Tris-buffered (pH 7.0, final concentration = 10 mM)
wastewater and DMSO (1:9, v/v). λex = 340 nm. Error bars were obtained by
three measurements.
In summary, a simple Cu2+-selective fluorescence signaling
probe based on a hydrazide derivative of pyrene fluorophore was
investigated. The designed probe exhibited marked Cu2+-
selective turn-on fluorescence signaling behavior via Cu2+-
assisted hydrolysis of pyrenecarbohydrazide to pyrenecarboxylic
acid. Investigation of related model compounds suggested that
the fluorescence signal became less significant as the distance
between the hydrazide functionality and the pyrene fluorophore
increased. The limit of detection of the probe for Cu2+ signaling
was 5.93 × 10–8 M (0.004 ppm). Moreover, as a practical
application, Cu2+ signaling in simulated semiconductor
16. Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. J. S.; Yoon, Y, J.; Yoon, J.
J. Org. Chem. 2006, 71, 2881–2884.
17. Zhou, Z.; Li, N.; Tong, A. Anal. Chim. Acta 2011, 702, 81–86.
18. (a) Kim, M. H.; Jang, H. H.; Yi, S.; Chang, S.-K.; Han M. S. Chem.
Commun. 2009, 4838–4840; (b) Ye, J.-H.; Xu, H.; Bai, Y.; Zhang, W.;
He, W. Tetrahedron Lett. 2014, 55, 6269–6273.
19. Choi, M. G.; Kim, J.; Hong, J. M.; Chang, I. J.; Ahn, S.; Chang, S.-K.
Tetrahedron Lett. 2016, 57, 975–978.
20. Zheng, Z.; Wang, L.; Tang, W.; Chen, P.; Zhu, H.; Yuan, Y.; Li, G.;
Zhang, H.; Liang, G. Biosens. Bioelectron. 2016, 83, 200–204.
21. Kim, H. Y.; Lee, H. J.; Chang, S.-K. Talanta 2015, 132, 625–629.
22. Hong, J. M.; Jun, J. K.; Kim, H. Y.; Ahn, S.; Chang, S.-K. Tetrahedron
Lett. 2015, 56, 5393–5396.
wastewater was achieved with a detection limit of 6.93 × 10–8
(0.005 ppm).
M
23. Jo, J.; Lee, H. W.; Liu, W.; Olasz, A.; Chen, C.-H.; Lee, D. J. Am. Chem.
−16007.
Soc. 2012, 134, 16000
24. Li, A.-F.; He, H.; Ruan, Y.-B.; Wen, Z.-C.; Zhao, J.-S.; Jiang, Q.-J.;
Jiang, Y.-B. Org. Biomol. Chem. 2009, 7, 193–200.
Supplementary data
25. Choi, M. G.; Im, H. G.; Noh, J. H.; Ryu, D. H.; Chang, S.-K. Sens.
Actuat. B Chem. 2013, 177, 583–588.
Supplementary data associated with this article can be found in
the online version, at doi:****.
26. Attanasi, O.; Serra-Zanetti, F. Synthesis 1980, 1980, 314–315.
27. Kumar, M.; Kumar, N.; Bhalla, V.; Sharma, P. R.; Kaur, T. Org. Lett.
2012, 14, 406–409.
28. Harris, D. C. In Quantitative Chemical Analysis; 8th ed.; Freeman: New
York, 2010; pp. 103−105.
References and notes
29. Zhang, J.; Richardson, H. W. In Ullmann’s Encyclopedia of Industrial
Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2016;
Ch. Copper compounds.
1. (a) Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Chem. Rev. 2013, 113, 192−270;
(b) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev.
2013, 42, 622−661; (c) Liu, Z.; He, W.; Guo, Z. Chem. Soc. Rev. 2013,
30. (a) Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Al Saadi, M. A.;
Suleyman, A. M. Int. J. Environ. Sci. Tech. 2011, 8, 799–806; (b) Wong,
Y. C.; Moganaragi, V.; Atiqah, N. A. Orient. J. Chem. 2013, 29, 1421–
1428.
−1600.
42, 1568
2. (a) Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443–3480; (b)
Carter, K. P.; Young, A. M.; Palmer, A. E. Chem. Rev. 2014, 114,
4564−4601.
3. (a) Uauy, R.; Olivares, M.; Gonzales, M. Am. J. Clin. Nutr. 1988, 67,
952S–959S; (b) Lutsenko, S.; Barnes, N. L.; Bartee, M. Y.; Dmitriev, O.
Y. Physiol. Rev. 2007, 87, 1011–1046; (c) Viguier, R. F. H.; Hulme, A.
N. J. Am. Chem. Soc. 2006, 128, 11370–11371; (d) Chan, Y. H.; Chen, J.
X.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas, J. D. Anal. Chem. 2010, 82,
3671–3678.
4. U.S. Geological Survey. Minerals Yearbook. Washington, DC: U.S.
Geological Survey.
5. (a) Bush, A. I. Curr. Opin. Chem. Biol. 2000, 4, 184–191; (b) Barnham,
K. J.; Bush, A. I. Curr. Opin. Chem. Biol. 2008, 12, 222–228.
6. (a) Kaler, S. G.; Holmes, C. S.; Goldstein, D. S.; Tang, J.; Godwin, S. C.;
Donasante, A.; Liew, C. J.; Sato, S.; Patronas, N. N. Engl. J. Med. 2008,
358, 605–614; (b) Ala, A.; Walker, A. P.; Ashkan, K.; Dooley, J. S.;
Schilsky, M. L. Lancet 2007, 369, 397–408.
7. Hahn, S. H.; Tanner, M. S.; Danks, D. M.; Gahl, W. A. Biochem. Mol.
Med. 1995, 54, 142–145.
8. Guidelines for Drinking-water Quality, World Health Organization,
Geneva, 1996.
9. Hunt, D. T. E.; Wilson, A. L. In The Chemical Analysis of Water; The
Royal Society of Chemistry: Oxford, 1986, p. 398.