10.1002/cssc.201801621
ChemSusChem
COMMUNICATION
3283-3297; e) M. Mikkelsen, M. Jørgensen, F. C. Krebs, Energy
Environ. Sci. 2010, 3, 43-81; f) Q. Liu, L. P. Wu, R. Jackstell, M. Beller,
Nature Commun. 2015, 6, 5933; g) G. Fiorani, W. S. Guo, A. W. Kleij,
Green Chem. 2015, 17, 1375-1389; h) Q. W. Song, Z. H. Zhou, L. N.
He, Green Chem. 2017, 19, 3707-3728; i) S. M. Jarvis, S. Samsatli,
Renew. Sust. Energ. Rev. 2018, 85, 46-68; j) J. Song, Q. Liu, H. Liu, X.
F. Jiang, Eur. J. Org. Chem. 2018, 2018, 696-713; k) H. Zhou, X. B. Lu,
Sci. China Chem. 2017, 60, 904-911; l) V. A. Peshkov, O. P.
Pereshivko, A. A. Nechaev, A. A. Peshkovc, E. V. V. der Eycken, Chem.
Soc. Rev. 2018, 47, 3861-3898.
[13] Reviews on photoreduction of CO2 to CO: a) H. Takeda, C. Cometto, O.
Ishitani, M. Robert, ACS Catal. 2017, 7, 70-88; b) X. X. Chang, T.
Wang, J. L. Gong, Energy Environ. Sci. 2016, 9, 2177-2196; c) Y.
Yamazaki, H. Takeda, O. Ishitani, J. Photoch. Photobio. C 2015, 25,
106-137; d) J. R. Ran, M. Jaroniec, S. Z. Qiao, Adv. Mater. 2018, 30,
1704649; e) C. Gao, J. Wang, H. X. Xu, Y. J. Xiong, Chem. Soc. Rev.
2017, 46, 2799-2823; f) Y. Chen, D. K. Wang, X. Y. Deng, Z. H. Li,
Catal. Sci. Technol. 2017, 7, 4893-4904; g) A. Dhakshinamoorthy, Z. H.
Li, H. Garcia, Chem. Soc. Rev. 2018, DOI: 10.1039/c8cs00256h.
[14] T. Ishiyama, H. Kizaki, N. Miyaura, A. Suzuki, Tetrahedron Lett. 1993,
34, 7595-7598.
[2]
Representative reports on reductive functionalization of CO2 with
amines: a) C. D. N. Gomes, O. Jacquet, C. Villiers, P. Thuéry, M.
Ephritikhine, T. Cantat, Angew. Chem. Int. Ed. 2012, 51, 187-190; b) A.
Tlili, E. Blondiaux, X. Frogneux, T. Cantat, Green Chem. 2015, 17, 157-
168; c) X. F. Liu, X. Y. Li, C. Qiao, H. C. Fu, L. N. He, Angew. Chem.
Int. Ed. 2017, 56, 7425-7429; d) T. X. Zhao, G. W. Zhai, J. Liang, P. Li,
X. B. Hu, Y. T. Wu, Chem. Commun. 2017, 53, 8046-8049; e) P. Daw,
S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-David, D. Milstein,
ACS Catal. 2017, 7, 2500-2504; f) L. Zhang, Z. B. Han, X. Y. Zhao, Z.
Wang, K. L. Ding, Angew. Chem. Int. Ed. 2015, 54, 6186-6189; g) R. L
Nicholls, J. A. McManus, C. M. Rayner, J. A. Morales-Serna, A. J. P.
White, B. N. Nguyen, ACS Catal. 2018, 8, 3678-3687; h) X. F. Liu, X. Y.
Li, C. Qiao, L. N. He, Synlett 2018, 29, 548-555.
[15] Reviews on transition metal catalyzed carbonylation: a) X. F. Wu, X. J.
Fang, L. P. Wu, R. Jackstell, H. Neumann, M. Beller, Acc. Chem. Res.
2014, 47, 1041-1053; b) Y. H. Li, Y. Y. Hu, X. F. Wu, Chem. Soc. Rev.
2018, 47, 172-194; c) L. P. Wu, X. J. Fang, Q. Liu, R. Jackstell, M.
Beller, X. F. Wu, ACS Catal. 2014, 4, 2977-2989.
[16] F. Jafarpour, P. Rashidi-Ranjbar, A. O. Kashani, Eur. J. Org. Chem.
2011, 2011, 2128-2132.
[17] A. Ahlburg, A. T. Lindhardt, R. H. Taaning, A. E. Modvig, T. Skrydstrup,
J. Org. Chem. 2013, 78, 10310-10318.
[18] X. X. Qi, L. B. Jiang, H. P. Li, X. F. Wu, Chem. Eur. J. 2015, 21, 17650-
17656.
[19] a) H. Y. Zhao, H. Y. Du, X. R. Yuan, T. J. Wang, W. Han, Green Chem.
2016, 18, 5782-5787; b) P. Sharma, S. Rohilla, N. Jain, J. Org. Chem.
2017, 82, 1105-1113.
[3]
a) M. E. Dry, Catal. Today 2002, 71, 227-241; b) H. Jahangiri, J.
Bennett, P. Mahjoubi, K. Wilson, S. Gu, Catal. Sci. Technol. 2014, 4,
2210-2229; c) Q. H. Zhang, J. C. Kang, Y. Wang, ChemCatChem 2010,
2, 1030-1058.
[20] X. Feng, Z. H. Li, J. Photoch. Photobio. A 2017, 337, 19-24.
[21] P. Gautam, R. Gupta, B. M. Bhanage, Eur. J. Org. Chem. 2017, 2017,
3431-3437.
[4]
[5]
a) R. Franke, D. Selent, A. Börner, Chem. Rev. 2012, 112, 5675-5732;
b) F. Hebrard, P. Kalck, Chem. Rev. 2009, 109, 4272-4282; c) X. X.
Tang, X. Q. Jia, Z. Huang, J. Am. Chem. Soc. 2018, 140, 4157-4163.
a) G. J. Sunley, D. J. Watson, Catal. Today 2000, 58, 293-307; b) A.
Brennfürer, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2009, 48,
4114-4133; c) X. F. Wu, H. Neumann, M. Beller, Chem. Rev. 2013, 113,
1-35.
[22] a) J. Hawecker, J. M. Lehn, R. Ziessel, J. Chem. Soc., Chem. Commun.
1983, 536-538; b) Y. Kou, Y. Nabetani, D. Masui, T. Shimada, S.
Takagi, H. Tachibana, H. Inoue, J. Am. Chem. Soc. 2014, 136, 6021-
6030; c) A. J. Morris, G. J. Meyer, E. Fujita, Accounts Chem. Res. 2009,
42, 1983-1994; d) J. Agarwal, E. Fujita, H. F. Schaefer, J. T.
Muckerman, J. Am. Chem. Soc. 2012, 134, 5180-5186; e) T. Morimoto,
T. Nakajima, S. Sawa, R. Nakanishi, D. Imori, O. Ishitani, J. Am. Chem.
Soc. 2013, 135, 16825-16828; f) T. Nakajima, Y. Tamaki, Kazuki Ueno,
E. Kato, T. Nishikawa, K. Ohkubo, Y. Yamazaki, T. Morimoto, O.
Ishitani, J. Am. Chem. Soc. 2016, 138, 13818-13821; g) X. Y. Deng, J.
Albero, L. Z. Xu, H. García, Z. H. Li, Inorg. Chem. 2018, 57, 8276-8286.
[23] T. Ishiyama, H. Kizaki, T. Hayashi, A. Suzuki, N. Miyaura, J. Org.
Chem. 1998, 63, 4726-4731.
[6]
Representative reports on reductive functionalization of CO2 via
reverse-water-gas-shift reaction (rWGSR): a) J. J. Zhang, Q. L. Qian, M.
Cui, C. J. Chen, S. S. Liu, B. X. Han, Green Chem. 2017, 19, 4396-
4401; b) L. Wang, W. Sun, C. Liu, Chin. J. Chem. 2018, 36, 353-362; c)
J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew.
Chem. Int. Ed. 2016, 55, 7296-7343; d) Q. Liu, L. P. Wu, I. Fleischer, D.
Selent, R. Franke, R. Jackstell, M. Beller, Chem. Eur. J. 2014, 20,
6888-6894; e) K. Tominaga, Y. Sasaki, J. Mol. Catal. A-Chem. 2004,
220, 159-165; f) V. K. Srivastava, P. Eilbracht, Catal. Commun. 2009,
10, 1791-1795; g) T. G. Ostapowicz, M. Schmitz, M. Krystof, J.
Klankermayer, W. Leitner, Angew. Chem. Int. Ed. 2013, 52, 12119-
12123.
[24] a) R. Grigg, S. P. Mutton, Tetrahedron 2010, 66, 5515-5548; b) W. W.
Fang, H. B. Zhu, Q. Y. Deng, S. L. Liu, X. Y. Liu, Y. Y. Shen, T. Tu,
Synthesis 2014, 46, 1689-1708; c) P. W. N. M. van Leeuwen, P. C. J.
Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev. 2000, 100, 2741-
2769.
[7]
[8]
L. P. Wu, Q. Liu, I. Fleischer, R. Jackstell, M. Beller, Nature Commun.
2014, 5, 3091.
[25] a) S. I. Murahashi, T. Naota, N. Nakajima, J. Org. Chem. 1986, 51,
898-901; b) J. Tsuji, K. Ohno, J. Am. Chem. Soc. 1968, 90, 94-98; c)
J. Blum, H. Rosenman, E. Bergmann, J. Org. Chem. 1968, 33, 1928-
1930.
a) X. Y. Ren, Z. Y. Zheng, L. Zhang, Z. Wang, C. G. Xia, K. L. Ding,
Angew. Chem. Int. Ed. 2017, 56, 310-313; b) X. D. Lang, L. N. He,
ChemSusChem 2018,11, 2062-2067.
[26] C. A. Tolman, Chem. Rev. 1977, 77, 313-348.
[9]
a) C. Lescot, D. U. Nielsen, I. S. Makarov, A. T. Lindhardt, K. Daasbjerg,
T. Skrydstrup, J. Am. Chem. Soc. 2014, 136, 6142-6147; b) Z. Lian, D.
U. Nielsen, A. T. Lindhardt, K. Daasbjerg, T. Skrydstrup, Nature
Commun. 2016, 7, 13782.
[27] J. R. Martinelli, D. A. Watson, D. M. M. Freckmann, T. E. Barder, S.
L. Buchwald, J. Org. Chem. 2008, 73, 7102-7107.
[28] H. Ling, J. T. Luoma, D. Hilleman, Cardiovasc. Res. 2013, 4, 47-55.
[29] a) R. M. de Figueiredo, J. S. Suppo, J. M. Campagne, Chem. Rev.
2016, 116, 12029-12122; b) B. Liu, F. Hu, B. F. Shi, ACS Catal. 2015, 5,
1863-1881; c) R. Takise, K. Muto,J. Yamaguchi, Chem. Soc. Rev. 2017,
46, 5864-5888; d) P. Hermange, A. T. Lindhardt, R. H. Taaning, K.
Bjerglund, D. Lupp, T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061-
6067; e) C. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 2011, 40, 3405-
3415.
[10] M. T. Jensen, M. H. Rønne, A. K. Ravn, R. W. Juhl, D. U. Nielsen, X. M.
Hu, S. U. Pedersen, K. Daasbjerg, T. Skrydstrup, Nat. Commun. 2017,
8, 489.
[11] a) T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, J. T.
Hupp, Energy Environ. Sci. 2008, 1, 66-78; b) N. S. Lewis, Chem. Rev.
2015, 115, 12631-12632; c) W. G. Tu , Y. Zhou, Z. G. Zou, Adv. Mater.
2014, 26, 4607-4626; d) Y. Ma, X. L. Wang, Y. S. Jia, X. B. Chen, H. X.
Han, C. Li, Chem. Rev. 2014, 114, 9987-10043; e) X. Liu, S. Inagaki, J.
L. Gong, Angew. Chem. Int. Ed. 2016, 55, 14924-14950.
[30] a) S. N. Gockel, K. L. Hull, Org. Lett. 2015, 17, 3236-3239; b) R.
Nakaya, H. Yorimitsu, K. Oshima, Chem. Lett. 2011, 40, 904-906; c) S.
V. F. Hansen, T. Ulven, Org. Lett. 2015, 17, 2832-2835.
[12] M. Halmann, Nature 1978, 275, 115-116.
[31] a) C. F. J. Barnard, Organometallics 2008, 27, 5402-5422; b) U.
Christmann, R. Vilar, Angew. Chem. Int. Ed. 2005, 44, 366-374; c) C.
This article is protected by copyright. All rights reserved.