Organic Letters
Letter
Chem., Int. Ed. 2013, 52, 12905. (f) Davis, J.; Srivastava, R. S.
Tetrahedron Lett. 2014, 55, 4178. (g) McClain, J. M.; Nicholas, K. M.
ACS Catal. 2014, 4, 2109.
Supporting Information is available free of charge on the ACS
(9) Investigation of other catalysts with 2 equiv of PPh3:
ReCl3(PPh3)2 (MeCN) 57% (Z/E = 72/28), ReOCl3(PPh3)2 81%
(86/14), MoO2Cl2 43% (94/6), MoO2Cl2(dmf) 80% (96/4),
Mo(CO)6 10% (85/15), MoO2 (acac)2 59% (47/53). Deoxygenation
of 1a was not observed with the following transition metal catalysts:
Re2(CO)10, [ReBr(CO)3(thf)]2, MoO3, W(CO)6, and MnO2.
(10) Investigation of solvents with 2.5 mol% of Re2O7 and 1.2 equiv
of P(OPh)3 for 6 h: ClC6H5 >99% (Z/E = 97/3), decane >99% (97/
3), ClCH2CH2Cl >99% (97/3), dioxane >99% (97/3), MeCN 22%
(95/5), DMF 18% (82/18).
(11) The price per 500 g of P(OPh)3 is $26, and that for PPh3 is $82
(TCI America Fine Chemicals).
(12) For intermolecular additive screens, see: (a) Collins, K. D.;
Glorius, F. Nat. Chem. 2013, 5, 597. (b) Collins, K. D.; Glorius, F. Acc.
Chem. Res. 2015, 48, 619.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by a Grant-in-Aid (No.
26248030) from JSPS, Japan, and the MEXT program for
promoting the enhancement of research universities.
(13) For recent reviews, see: (a) Handbook of Metathesis; Grubbs, R.
H., Ed.; Wiley-VCH: Weinheim, Germany, 2003. (b) Metathesis in
Natural Product Synthesis: Strategies, Substrates, and Catalysts, 1st ed.;
Cossy, J., Arseniyadis, S., Meyer, C., Eds.; Wiley-VCH: Weinheim,
Germany, 2010. (c) Nickel, A.; Pedersen, R. L. In Olefin Metathesis:
Theory and Practice; Grela, K., Ed.; Wiley-VCH: Weinheim, Germany,
2014.
(14) Effect of phosphines and phosphites (1.2 equiv) on the
regioselectivity in the deoxygenation of 1a with 2.5 mol% of Re2O7 for
6 h: PPh3 >99% (Z/E = 60/40), P(furyl)3 76% (68/32), P(o-tol) 7%
(98/2), P(C6F5)3 55% (95/5), P(O(4-FC6H4))3 >99% (97/3), PnBu3
2%, PCy3 0%, dppe 7%.
(15) Diol 7 was not converted to olefin 2a in the presence of a Re2O7
catalyst with P(OPh)3. Therefore, the active catalytic species generated
from the reduction of Re2O7 with P(OPh)3 should directly convert 1a
to 2a without producing 7, thus having different reactivity compared
with the original high valent Re2O7 species.
(16) For a mechanism study of rhenium-catalyzed deoxygenation of
epoxides, see: Bi, S.; Wang, J.; Liu, L.; Li, P.; Lin, Z. Organometallics
2012, 31, 6139.
REFERENCES
■
(1) (a) Corey, E. J.; Su, W. G. J. Am. Chem. Soc. 1987, 109, 7534.
(b) Kraus, G. A.; Thomas, P. J. J. Org. Chem. 1988, 53, 1395.
(c) Johnson, W. S.; Plummer, M. S.; Reddy, S. P.; Bartlett, W. R. J. Am.
Chem. Soc. 1993, 115, 515. (d) Nowak, D. M.; Lansbury, P. T.
Tetrahedron 1998, 54, 319. (e) Krische, M. J.; Trost, B. M. Tetrahedron
1998, 54, 7109. (f) Johnson, J.; Kim, S.-H.; Bifano, M.; DiMarco, J.;
Fairchild, C.; Gougoutas, J.; Lee, F.; Long, B.; Tokarski, J.; Vite, G.
Org. Lett. 2000, 2, 1537. (g) Pyun, H.-J.; Fardis, M.; Tario, J.; Yang, C.
Y.; Ruckman, J.; Henninger, D.; Jin, H.; Kim, C. U. Bioorg. Med. Chem.
Lett. 2004, 14, 91. (h) Molander, G. A.; St. Jean, D. J., Jr.; Haas, J. J.
Am. Chem. Soc. 2004, 126, 1642. (i) Inoue, M.; Hatano, S.; Kodama,
M.; Sasaki, T.; Kikuchi, T.; Hirama, M. Org. Lett. 2004, 6, 3833.
(j) Smith, A. B., III; Mesaros, E. F.; Meyer, E. A. J. Am. Chem. Soc.
2005, 127, 6948. (k) Sengoku, T.; Xu, S.; Ogura, K.; Emori, Y.; Kitada,
K.; Uemura, D.; Arimoto, H. Angew. Chem., Int. Ed. 2014, 53, 4213.
(2) (a) Whitlon, D. S.; Sadowski, J. A.; Suttie, J. W. Biochemistry
1978, 17, 1371. (b) Silverman, R. B. J. Am. Chem. Soc. 1981, 103, 3910.
(c) Preusch, P. C.; Suttie, J. W. J. Org. Chem. 1983, 48, 3301. (d) Lee,
J. J.; Fasco, M. J. Biochemistry 1984, 23, 2246. (e) Mukharji, I.;
Silverman, R. B. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 2713.
(17) Because the regioselectivity of the reaction depends on the
choice of reductants as noted in ref 14, coordination of phosphite to
oxorhenium species cannot be ruled out.
(18) The decrease of the selectivity in the reaction using PPh3 as a
reductant (Table 1, entry 4) might be explained by considering the
intermolecular nucleophilic attack of PPh3 on the carbon atom of
rhena-2,5-dioxolane intermediate B followed by PPh3-facilitated
reductive deoxygenation via the oxaphosphetane intermediate C.
(3) (a) Backvall, J. E. Modern Oxidation Methods, 2nd ed.; Wiley-
̈
VCH: Weinheim, Germany, 2010. (b) Lane, B. S.; Burgess, K. Chem.
Rev. 2003, 103, 2457. (c) Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.;
Su, K.-X. Chem. Rev. 2005, 105, 1603. (d) McGarrigle, E. M.;
Gilheany, D. G. Chem. Rev. 2005, 105, 1563. (e) Wong, O. A.; Shi, Y.
Chem. Rev. 2008, 108, 3958.
(4) Sharpless, K. B.; Umbreit, M. A.; Nieh, M. T.; Flood, T. C. J. Am.
Chem. Soc. 1972, 94, 6538.
(5) Larock, R. C. Comprehensive Organic Transformations: A Guide to
Functional Group Preparations; VCH: New York, 1993; p 155.
(6) For the catalytic deoxygenation of epoxides, see: (a) Zhu, Z.;
Espenson, J. H. J. Mol. Catal. 1995, 103, 87. (b) Cook, G. K.; Andrews,
M. A. J. Am. Chem. Soc. 1996, 118, 9448. (c) Gable, K. P.; Zhuravlev,
F. A.; Yokochi, A. F. T. Chem. Commun. 1998, 799. (d) Gable, K. P.;
Brown, E. C. Organometallics 2000, 19, 944. (e) Arterburn, J. B.; Liu,
M.; Perry, M. C. Helv. Chim. Acta 2002, 85, 3225. (f) Gable, K. P.;
Brown, E. C. Synlett 2003, 2243. (g) Vkuturi, S.; Chapman, G.;
Ahmad, I.; Nicholas, K. M. Inorg. Chem. 2010, 49, 4744. (h) Sousa, S.
C. A.; Fernandes, A. C. Tetrahedron Lett. 2011, 52, 6960. (i) Stanowski,
S.; Nicholas, K. M.; Srivastava, R. S. Organometallics 2012, 31, 515.
(7) For a review of rhenium carbonyl-catalyzed carbon−carbon bond
formation, see: (a) Kuninobu, Y.; Takai, K. Chem. Rev. 2011, 111,
1938. For an account, see: (b) Kuninobu, Y.; Takai, K. Bull. Chem.
Soc. Jpn. 2012, 85, 656.
(8) For the rhenium-catalyzed didehydroxylation of vicinal diols, see:
(a) Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2010,
132, 11408. (b) Ahmad, I.; Chapman, G.; Nicholas, K. M.
Organometallics 2011, 30, 2810. (c) Shiramizu, M.; Toste, F. D.
Angew. Chem., Int. Ed. 2012, 51, 8082. (d) Liu, P.; Nicholas, K. M.
Organometallics 2013, 32, 1821. (e) Shiramizu, M.; Toste, F. D. Angew.
D
Org. Lett. XXXX, XXX, XXX−XXX