Gold-Catalyzed Benzylation of Arenes and Heteroarenes
COMMUNICATIONS
[7] a) A. S. K. Hashmi, T. L. Ruppert, T. Knçfel, J. W. Bats,
J. Org. Chem. 1997, 62, 7295–7304; b) A. S. K. Hashmi,
L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem.
2000, 112, 2382–2385; Angew. Chem. Int. Ed. 2000, 39,
2285–2288; c) A. S. K. Hashmi, L. Schwarz, J. W. Bats,
J. Prakt. Chem. 2000, 342, 40–51; d) A. S. K. Hashmi,
T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122,
11553–11554; e) A. S. K. Hashmi, T. M. Frost, J. W.
Bats, Catal. Today 2002, 72, 19–27; f) A. S. K. Hashmi,
Gold Bull. 2003, 36, 3–9.
[17] For example, Fe catalysts have been used for reactions of
benzyl chloride with non-functionalized arenes. Here,
stoichiometric amounts of unwanted hydrogen chloride
are formed; recent examples: a) S. G. Pai, A. R. Bajpai,
A. B. Deshpande, S. D. Samant, J. Mol. Catal. A: Chem.
2000, 156, 233–243; b) V. R. Choudhary, S. K. Jana,
A. S. Mamman, Microporous and Mesoporous Materials
2002, 56, 65–71; c) V. R. Choudhary, S. K. Jana, Appl.
Catal. 2002, 224, 51–62; d) V. R. Choudhary, S. K. Jana,
J. Mol. Catal. A: Chem. 2002, 180, 267–276.
[8] G. Dyker, D. Hildebrandt, J. H. Liu, K. Merz, Angew.
Chem. 2003, 115, 4536–4538; Angew. Chem. Int. Ed.
2003, 42, 4439–4402.
[9] G. Dyker, E. Muth, Adv. Synth. Catal. 2003, 345, 1247–
1252.
[10] A. S. K. Hashmi, J. P. Weyrauch, W. Frey, J. W. Bats, Org.
Lett. 2004, 6, 4391–4394.
[11] a) A. S. K. Hashmi, L. Grundl, Tetrahedron 2005, 61,
6231–6236; b) N. Morita, N. Krause, Org. Lett. 2004, 6,
4121–4123.
[18] A special exception is the cyclization of substituted ben-
zyl alcohols with pyrrole see: a) G. Dyker, D. Hilde-
brandt, J. Liu, K. Merz, Angew. Chem. 2003, 115,
4536–4538; Angew. Chem. Int. Ed. 2003, 42, 4399–
4402; see also: b) Y. Nishibayashi, M. Yoshikawa, Y. Ina-
da, M. D. Milton, M. Hidai, S. Uemura, Angew. Chem.
2003, 115, 2663–2666; Angew. Chem. Int. Ed. 2003, 42,
2681–2684; c) Y. Nishibayashi, Y. Inada, M. Yoshikawa,
M. Hidai, S. Uemura, Angew. Chem. 2003, 115, 1533–
1536; Angew. Chem. Int. Ed. 2003, 42, 1495–1498.
[19] E. Mincione, P. Bovicelli, Gazz. Chim. Ital. 1982, 112,
437–440.
[12] A. S. K. Hashmi, P. Sinha, Adv. Synth. Catal. 2004, 346,
432–438.
[13] A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph, E. Kurpe-
jovic, Angew. Chem. 2004, 116, 6707–6709; Angew.
Chem. Int. Ed. 2004, 43, 6545–6547.
[14] a) K. Mertins, I. Jovel, J. Kischel, A. Zapf, M. Beller, An-
gew. Chem. 2005, 117, 242–246; Angew. Chem. Int. Ed.
2005, 44, 238–242; b) I. Jovel, K. Mertins, J. Kischel, A.
Zapf, M. Beller, Angew. Chem. 2005, 117, 3981–3985;
Angew. Chem. Int. Ed. 2005, 44, 3913–3917.
[15] For other examples using transition metal complexes see:
a) G. Dyker, D. Hildebrandt, J. Liu, K. Merz, Angew.
Chem. 2003, 115, 4536–4538; Angew. Chem. Int. Ed.
2003, 42, 4399–4402; b) Y. Nishibayashi, M. Yoshikawa,
Y. Inada, M. D. Milton, M. Hidai, S. Uemura, Angew.
Chem. 2003, 115, 2663–2666; Angew. Chem. Int. Ed.
2003, 42, 2681–2684; c) Y. Nishibayashi, Y. Inada, M.
Yoshikawa, M. Hidai, S. Uemura, Angew. Chem. 2003,
115, 1533–1536; Angew. Chem. Int. Ed. 2003, 42, 1495–
1498.
[20] a) T. Kondo, S. Kajiya, S. Tantayanon, Y. Watanabe, J.
Organomet. Chem. 1995, 489, 83–91; b) T. Kondo, S.
Tantayanon, Y. Tsuji, Y. Watanabe, Tetrahedron Lett.
1989, 30, 4137–4140.
[21] For comparison: 1 mol % (10 mol % HBF4 at room tem-
perature leads to 3% (99%) of 1c. The use of HBF4 in po-
lar solvents leads to lower yields compared to gold cata-
lysts. For example the reaction of o-xylene with 1-phe-
nylethyl acetate in the presence of 10 mol % HBF4 in
ethyl acetate (80 8C, 20 h) gives 23% yield of 1c (with
AuCl3: 99% yield of 1c, see Table 1, entry10). In addition
the reaction of phenol with 4-chlorobenzyl alcohol in the
presence of 10 mol % HBF4 in MeNO2 (80 8C, 20 h) re-
sults in 38% yield of 2d (with HAuCl4: 99% yield of
2d, see Table 3, entry9).
[22] Synthesis of ethyl 2-[4-(4-chlorobenzyl)phenoxy]-2-
ꢀ
methylbutanoate via Hell–Volhard Zelinskybromina-
tion of 2-methylbutanoic acid: H. E. Zimmerman, J. D.
Robbins, R. D. McKelvey, C. J. Samuel, L. R. Sousa, J.
Am. Chem. Soc. 1974, 96, 4630–4643; and subsequent
Williamson ether synthesis: M. Julia, Bull. Soc. Chim.
Fr. 1956, 776–783.
[16] a) R. van Asselt, J. C. Elsevier, Tetrahedron 1994, 50,
323–334; b) R. van Asselt, J. C. Elsevier, Organometal-
lics 1992, 11, 1999–2001.
Adv. Synth. Catal. 2006, 348, 691 – 695
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
695