Journal of the American Chemical Society
Communication
AUTHOR INFORMATION
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We dedicate this paper to Prof. Hie-Joon Kim on his retirement
and his outstanding contribution to education at SNU. We
thank NCIRF at SNU for supporting GC-MS experiments. We
are grateful for the financial support from the Basic Science
Research Program, the Nano-Material Technology Develop-
ment Program, and BRL through the National Research
Foundation of Korea.
Figure 1. THF SEC trace monitored using a UV detector at 254 nm.
REFERENCES
■
the successful introduction of various diynes and sulfonyl
azides, we finally examined a variety of diamines to enrich the
combination of monomers. Polymerization using primary
dialkylamines and sterically demanding secondary dialkylamines
(
1) (a) Bae, I.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038.
b) Yoo, E. J.; Bae, I.; Cho, S. H.; Han, H.; Chang, S. Org. Lett. 2006,
(
8, 1347. (c) Yoo, E. J.; Ahlquist, M.; Bae, I.; Fokin, V. V.; Sharpless, K.
B.; Chang, S. J. Org. Chem. 2008, 73, 5520. (d) Kim, J. Y.; Kim, S. H.;
Chang, S. Tetrahedron Lett. 2008, 49, 1745. (e) Hwang, S. J.; Cho, S.
H.; Chang, S. Pure Appl. Chem. 2008, 80, 873. (f) Kim, S. H.; Park, S.
H.; Choi, J. H.; Chang, S. Chem.Asian J. 2011, 6, 2618.
successfully yielded polyamidines with absolute M values of up
n
to 67 kg/mol, as measured by MALLS (Table 2, entries 16−
21). In addition, even though aniline derivatives are much
(
(
3
2) (a) Mannich, C.; Krosche, W. Arch. Pharm 1912, 250, 647.
weaker nucleophiles than alkylamines, diarylamines (3f, 3g, and
h) were excellent monomers for this MCP, affording the
highest absolute M values of up to 75 kg/mol (Table 2, entries
b) Arend, M.; Westermann, B.; Risch, N. Angew. Chem., Int. Ed. 1998,
7, 1044.
(3) (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 126. (b) Andreana,
P. R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6, 4231.
(4) Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem.
Soc. Rev. 2012, 41, 3790.
3
n
22−25). From these observations, we can conclude that once
the ketenimine species is formed via ring opening of the
triazole, nucleophilic attack on the highly reactive ketenimine
by the diamine readily occurs regardless of the electronic and
steric nature of the diamine. Moreover, rigid diamines (3f and
(
1
(
5) Kreye, O.; Tot
790.
6) Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. ACS Macro
́
h, T.; Meier, M. A. R. J. Am. Chem. Soc. 2011, 133,
3h) produced the polyamidines with the highest molecular
Lett. 2012, 1, 1300.
(7) (a) Takenoya, K.; Yokozawa, T. Macromolecules 1998, 31, 2906.
b) Niimi, L.; Shiino, K.; Hiraoka, S.; Yokozawa, T. Macromolecules
2002, 35, 3490.
weights when polymerized with rigid diyne 1f (absolute M of
n
up to 75 kg/mol) (Table 2, entries 22 and 25) because the rigid
monomers suppressed the cyclization reactions.
(
In summary, we have synthesized various poly(N-sulfonyla-
midines) via a Cu-catalyzed 3CR of diynes, sulfonyl azides, and
diamines. This MCP shows high selectivity for the 3CR over
the click reaction, affording defect-free polyamidines with
highly regular structures. Conversion in the polymerization
reaction was significantly enhanced by the addition of excess
external base (5 equiv of TEA) with a polar solvent (DMF),
while cyclic contaminants were reduced by incorporating long
or rigid moieties into the diyne or diamine monomers. The
significance of this work lies in the ability of the Cu-catalyzed
MCP to facilitate the facile and efficient synthesis of highly
diverse high-molecular-weight polyamidines from an electroni-
cally and sterically diverse range of diynes, sulfonyl azides, and
diamines, which are not only readily available but also stable
under the given reaction conditions. Therefore, diverse
moieties such as alkyl, aryl, diene, and poly(ethylene glycol)
could be incorporated into the polymer backbone. Ultimately,
this MCP overcomes the common limitations of other MCPs,
such as low conversion and narrow substrate scope.
(8) Ihara, E.; Hara, Y.; Itoh, T.; Inoue, K. Macromolecules 2011, 44,
5
(
955.
9) Niimi, L.; Serita, K.; Hiraoka, S.; Yokozawa, T. J. Polym. Sci., Part
A: Polym. Chem. 2002, 40, 1236.
10) Ochiai, B.; Ogihara, T.; Mashiko, M.; Endo, T. J. Am. Chem. Soc.
009, 131, 1636.
11) (a) Miyaki, N.; Tomita, I.; Endo, T. Macromolecules 1997, 30,
(
2
(
4504. (b) Choi, C. K.; Tomita, I.; Endo, T. Macromolecules 2000, 33,
1487. (c) Ishibe, S.; Tomita, I. J. Polym. Sci., Part A: Polym. Chem.
2005, 43, 3403. (d) Nakagawa, K.; Tomita, I. Chem. Lett. 2007, 36,
6
38. (e) Siamaki, A. R.; Sakalauskas, M.; Arndtsen, B. A. Angew. Chem.,
Int. Ed. 2011, 50, 6552.
12) (a) Nastruzzi, C.; Gambari, R.; Menegatti, E.; Walde, P.; Luisi,
P. L. J. Pharm. Sci. 1990, 79, 672. (b) Sharavanan, K.; Komber, H.;
Fischer, D.; Bohme, F. Polymer 2004, 45, 2127.
13) Ionov, A. N.; Rentzsch, R.; Nikolaeva, M. N. Phys. Status Solidi C
2008, 5, 730.
(
̈
(
(14) (a) Aleksandrova, E. L.; Dudkina, M. M.; Ten’kovtsev, A. V.
Semiconductors 2003, 37, 282. (b) Aleksandrova, E. L.; Dudkina, M.
M.; Ten’kovtsev, A. V. Semiconductors 2004, 38, 1284.
(
15) (a) Brand, R. A.; Bruma, M.; Kellman, R.; Marvel, C. S. J. Polym.
Sci., Polym. Chem. Ed. 1978, 16, 2275. (b) Sharavanan, K.; Komber, H.;
Bohme, F. Macromol. Chem. Phys. 2002, 203, 1852. (c) Kholkhoev, B.
Ch.; Burdukovskii, V. F.; Mognonov, D. M. Russ. Chem. Bull., Int. Ed.
010, 59, 2159. (d) Kholkhoev, B. Ch.; Burdukovskii, V. F.;
Mognonov, D. M. Russ. J. Appl. Chem. 2011, 84, 510.
16) (a) Díaz, D. D.; Punna, S.; Holzer, P.; McPherson, A. K.;
̈
ASSOCIATED CONTENT
■
2
*
S
Supporting Information
Experimental details, synthesis, complete table of optimization
results, characterization data (TGA, DSC, SEC traces, etc.), and
(
Sharpless, K. B.; Fokin, V. V.; Finn, M. G. J. Polym. Sci., Part A: Polym.
Chem. 2004, 42, 4392. (b) Qin, A.; Lam, J. W. Y.; Tang, B. Z. Chem.
Soc. Rev. 2010, 39, 2522.
3
763
dx.doi.org/10.1021/ja312592e | J. Am. Chem. Soc. 2013, 135, 3760−3763