7696
J. Fournier-Dit-Chabert et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7693–7696
Table 3
Department, The University of Texas Health Science Center, San
Antonio, Texas, USA).
Growth inhibition of HeLa parental and HeLa b-III transfected cervix carcinoma cells
by compounds 10 and 11
Compound
HeLa
HeLa bIII
RFb
References and notes
10
11
585.9 49.9a
192.3 16.3
1.0 0.1
554.3 50
164.1 16.3
11.2 0.1
9.7 0.3
0.95
0.85
11.2
1.2
1. Cerquaglia, C.; Diaco, M.; Nucera, G.; La Regina, M.; Montalto, M.; Manna, R.
Curr. Drug Targets Inflamm. Allergy 2005, 4, 117.
2. Ben-Chetrit, E.; Levy, M. Semin. Arthritis Rheum. 1998, 28, 48.
3. Pasquier, E.; Andre, N.; Braguer, D. Curr. Cancer Drug Targets 2007, 7, 566.
4. Baguley, B. C.; Holdaway, K. M.; Thomsen, L. L.; Zhuang, L.; Zwi, L. J. Eur. J.
Cancer 1991, 27, 482.
Paclitaxel
Colchicine
8.2 0.3
a
IC50 values are the mean standard error of at least four independent assays.
The resistance factor is obtained by dividing the IC50 of the resistant HeLa b-III
cell line with the parental HeLa cell line.
b
5. Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat. Rev. Cancer 2005, 5, 423.
6. Schwartz, E. L. Clin. Cancer Res. 2009, 15, 2594.
7. Kanthou, C.; Tozer, G. M. Int. J. Exp. Pathol. 2009, 90, 284.
8. Zhao, Y.; Fang, W. S.; Pors, K. Expert Opin. Ther. Pat. 2009, 19, 607.
9. Hinnen, P.; Eskens, F. A. Br. J. Cancer 2007, 96, 1159.
10. van Heeckeren, W. J.; Bhakta, S.; Ortiz, J.; Duerk, J.; Cooney, M. M.; Dowlati, A.;
McCrae, K.; Remick, S. C. J. Clin. Oncol. 2006, 24, 1485.
option to taxoids against patients which relapse due to drug-resis-
tant tumors. In this respect, we also evaluated compound 10 and
11 in parental HeLa cells and a transfected b-III resistant variant.28
The latter is resistant to agents binding at the paclitaxel binding
site as well as the Vinca alkaloid binding site.29 As the data in Table
3 reveals, these two compounds were unaffected by the b-III tubu-
lin resistance as was the case with colchicine. In contrast, the po-
tency of paclitaxel was reduced approximately 11-fold.
11. Deryugina, E. I.; Quigley, J. P. Cancer Metastasis Rev. 2006, 25, 9.
12. Egeblad, M.; Werb, Z. Nat. Rev. Cancer 2002, 2, 161.
13. Overall, C. M.; Kleifeld, O. Nat. Rev. Cancer 2006, 6, 227.
14. Atkinson, J. M.; Siller, C. S.; Gill, J. H. Br. J. Pharmacol. 2008, 153, 1344.
15. Tang-Wai, D. F.; Brossi, A.; Arnold, L. D.; Gros, P. Biochemistry 1993, 32, 6470.
16. Atkinson, J. M.; Falconer, R. A.; Edwards, D. R.; Pennington, C. J.; Siller, C. S.;
Shnyder, S. D.; Bibby, M. C.; Patterson, L. H.; Loadman, P. M.; Gill, J. H. Cancer
Res. 2010, 70, 6902.
Despite of the emergence of molecularly targeted agents, it is
acknowledged that microtubule disrupting agents will continue
to offer physicians viable therapeutic options to combat cancer
for the foreseeable future.30,31 Continued interest in these agents
also derives from observations that they possess anti-vascular
properties, which has been considered a promising approach to
collapsing the blood supply feeding the tumor vasculature. As
yet, however, no compounds based on the colchicine scaffold have
been successful in treating cancer patients. Many factors related to
the colchicine architecture warrant further exploration, including
the structural simplicity of the scaffold, the availability of the nat-
ural product, the ease with which this natural product can be syn-
thetically manipulated as identified in this study, and its ability to
evade Class III b-tubulin resistance. Our ongoing synthetic and bio-
logical studies on several different classes of anticancer agents are
aimed at combining properties that make potent natural products
and synthetic analogues evade conventional resistance mecha-
nisms,32–34 but also exploit the tumor microenvironment to deliver
sufficient doses of compound to elicit an efficient therapeutic
response.16,34 We have reported here a new library of colchicine
analogues modified at the C-ring by incorporation of aliphatic
and heterocyclic amines, which are suitable for prodrug derivatisa-
tion. Although compounds presented in this study do not represent
an improvement on the potency of colchicine, they do, however,
offer the significant advantage that they can be delivered safely
to solid tumors, for example by incorporating peptides that are
only recognized by MT-MMPs as previously described.16 This study
is important as it contributes to existing knowledge on colchicine
C-ring modifications and further provides insights into the poten-
tial opportunities for prodrug derivatisation and tumor selectivity.
17. Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M.
Nat. Rev. Drug Disc. 2006, 5, 219.
18. Gelmi, M. L.; Mottadelli, S.; Pocar, D.; Riva, A.; Bombardelli, E.; De Vincenzo, R.;
Scambia, G. J. Med. Chem. 1999, 42, 5272.
19. Ringel, I.; Jaffe, D.; Alerhand, S.; Boye, O.; Muzaffar, A.; Brossi, A. J. Med. Chem.
1991, 34, 3334.
20. Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.;
Knossow, M. Nature 2004, 428, 198.
21. Labute, P. J. Comput. Chem. 2008, 29, 1693.
22. Massarotti, A.; Coluccia, A.; Silvestri, R.; Sorba, G.; Brancale, A. ChemMedChem
2012, 7, 33.
23. Pors, K.; Plumb, J. A.; Brown, R.; Teesdale-Spittle, P.; Searcey, M.; Smith, P. J.;
Patterson, L. H. J. Med. Chem. 2005, 48, 6690.
24. General procedure for preparation of target compounds: A solution of colchicine
(399 mg; 1 mmol) and ethanolamine (1.55 g; 25 mmol) was stirred at 70 °C for
4 h. Following evaporation, the mixture was dissolved in CH2CL2 (20 mL) and
then washed with a saturated sodium carbonate solution (2 Â 20 mL), dried
over MgSO4, filtered and evaporated to afford a yellow powder 10 (418 mg,
98%). dH (600 MHz, CDCl3): 1.86 (m, 1H), 2.00 (s, 3H), 2.19 (m, 1H), 2.28 (m,
1H), 2.39 (dd, 1H, J 5.9; 12.9 Hz), 3.50 (m, 2H), 3.57 (s, 3H), 3.85 (s, 3H), 3.91 (s,
3H), 3.95 (m, 2H), 4.64 (ddd, 1H, J 6.4; 6.8; 11.8 Hz), 5.56 (br s, 1H, OH), 6.49 (s,
1H), 6.64 (d, 1H, J 11.5 Hz), 7.42 (s, 1H), 7.43 (d, 1H, J 11.5 Hz), 7.72 (d, 1H, NH, J
6.4 Hz), 7.93 (m, 1H, NH) ppm. 13C (150 MHz, CDCl3): 22.7 (CH3), 29.9 (CH2),
37.1 (CH2), 45.7 (CH2), 52.3 (CH), 56.0 (CH3), 59.8 (CH2), 61.2 (CH3), 61.3 (CH3),
107.2 (CH), 109.1 (CH), 122.6 (CH), 126.6 (C), 130.6 (C), 134.4 (C), 139.5 (CH),
141.4 (C), 150.9 (C), 151.2 (C), 152.8 (C), 154.8 (C), 169.9 (C@O), 174.9 (C@O)
ppm. m/z (ES+) 430 (M+2, 30), 429 (M+1, 100).
25. Ringel, I.; Bakshi, O.; Mellado, W.; Ramu, A.; Gibson, D.; Katzhendler, J. Biochem.
Pharmacol. 1988, 37, 2487.
26. Li, D. H.; Zhang, S. K.; Hao, Z. G.; Ma, K. S.; Tan, X. R.; Wang, Z. L.; Li, N. K. Chin.
Med. J. (Engl.) 1980, 93, 188.
27. Stengel, C.; Newman, S. P.; Leese, M. P.; Potter, B. V.; Reed, M. J.; Purohit, A. Br. J.
Cancer 2010, 102, 316.
28. Joe, P. A.; Banerjee, A.; Luduena, R. F. Cell Motil. Cytoskeleton 2008, 65, 476.
29. Risinger, A. L.; Jackson, E. M.; Polin, L. A.; Helms, G. L.; LeBoeuf, D. A.; Joe, P. A.;
Hopper-Borge, E.; Luduena, R. F.; Kruh, G. D.; Mooberry, S. L. Cancer Res. 2008,
68, 8881.
30. Jordan, M. A.; Wilson, L. Nat. Rev. Cancer 2004, 4, 253.
31. Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang, P. S. Nat. Rev. Cancer 2007, 7,
107.
32. Abdallah, Q. M.; Phillips, R. M.; Johansson, F.; Helleday, T.; Cosentino, L.; Abdel-
Rahman, H.; Etzad, J.; Wheelhouse, R. T.; Kiakos, K.; Bingham, J. P.; Hartley, J.
A.; Patterson, L. H.; Pors, K. Biochem. Pharmacol. 2012, 83, 1514.
33. Pors, K.; Loadman, P. M.; Shnyder, S. D.; Sutherland, M.; Sheldrake, H. M.;
Guino, M.; Kiakos, K.; Hartley, J. A.; Searcey, M.; Patterson, L. H. Chem. Commun.
(Camb.) 2011, 47, 12062.
Acknowledgments
This work was supported by YCR Program Grant (R.A.F., K.P.),
FCT (A.R.S., SFRH/BD/46871/2008), BIO2010-16351 from Ministe-
rio de Economia y Competitividad (J.F.D.) and grant S2010/BMD-
2457 BIPEDD2 from Comunidad Autónoma de Madrid (J.F.D.).
Parental HeLa and transfected b-III cervix carcinoma cell lines were
a kindly gift from Professor Richard F. Ludueña (Biochemical
34. Pors, K.; Shnyder, S. D.; Teesdale-Spittle, P. H.; Hartley, J. A.; Zloh, M.; Searcey,
M.; Patterson, L. H. J. Med. Chem. 2006, 49, 7013.