The Journal of Organic Chemistry
Article
successively with saturated aqueous NaHCO and water, dried over
3
AUTHOR INFORMATION
■
MgSO , and evaporated. The residue was purified by column
4
chromatography with hexane−ethyl acetate (3/1) as an eluent to
give nitro compound 13 (608 mg, 43%) as a pale yellow oil: IR (neat)
−1 1
2
926, 2855, 1601, 1519, 1346, 1110, 854, 747, 697 cm ; H NMR
(
(
2
2
400 MHz) δ 0.86 (t, 3H, J = 6.9 Hz), 1.26−1.32 (m, 12H), 1.60−1.68
Notes
m, 2H), 2.71 (t, 2H, J = 7.7 Hz), 7.32 (d, 2H, J = 8.8 Hz), 8.13 (d,
H, J = 8.8 Hz); 13C NMR (100 MHz) δ 14.2, 22.8, 29.3, 29.4, 29.5,
The authors declare no competing financial interest.
9.6, 31.1, 32.0, 36.0, 123.7, 129.3, 146.3, 151.0; HRMS (ESI) calcd
+
for C H NNaO (M + Na) 272.1626, found 272.1621.
ACKNOWLEDGMENTS
15
23
2
■
Typical Procedure for the Analysis of ε Dependence of
Enantiomeric Ratio (E) for CAL-B-Catalyzed Acetylation. To a
solution of alcohol (R)-1 (344 mg, 2.00 mmol) and vinyl acetate (d =
We wish to thank Novozymes Japan Ltd. of Japan for a
generous gift of Lypozyme CALB-L solution. We also wish to
thank Prof. S. Shoda, Assist. Prof. A. Kobayashi, Assist. Prof. M.
Noguchi, and Dr. M. Ishihara (Tohoku University) for
courteous permission to use their instruments and technical
guidance.
0
.93; 740 μL, 8.0 mmol) in toluene−acetonitrile (3/1, v/v (ε = 11.2),
2
.0 mL) in a 30 mL screw-cap vial was added CAL-B powder (15.0
mg), and the suspension was shaken at 30 °C. A small portion (20 μL)
of the mixture was taken out at 20 min intervals, quenched with 5%
(
w/v) aqueous trichloroacetic acid, and extracted with dichloro-
methane. The organic extract was dried over MgSO , concentrated,
4
REFERENCES
■
and submitted to GC analysis (column, Quadrex MPS-10 (0.32 mm
i.d. × 25 m); oven temperature, 150 °C; detector, FID) to determine
the conversion (c). The initial rate (v ) was determined to be 4.93 ×
(
1) Selected reviews: (a) Shi, C. J.; Wu, S.-H. In Topics in
Stereochemistry; Eliel, E. L., Wilen, S. H., Eds.; Wiley: New York, 1989;
Vol. 19, pp 63−125. (b) Chen, C.-S.; Shi, C. J. Angew. Chem., Int. Ed.
Engl. 1989, 28, 695. (c) Straathof, A. J. J.; Jongejan, J. A. Enzyme
Microb. Technol. 1997, 21, 559. (d) Enzyme Catalysis in Organic
Synthesis: A Comprehensive Handbook, 2nd ed.; Drauz, K., Waldmann,
H., Eds.; Wiley-VCH: Weinheim. Germany, 2002; Vols. I−III.
(e) Biotransformation in Organic Chemistry, 6th ed.; Faber, K., Ed.;
Springer: Berlin, 2011.
2) For applications of enzymatic kinetic resolution in industry and
laboratories, see: (a) Klibanov, A. M. Nature 2001, 409, 241.
b) Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.;
Witholt, B. Nature 2001, 409, 258. (c) Breuer, M.; Ditrich, K.;
Habicher, T.; Hauer, B.; Keβeler, M.; Sturmer, R.; Zelinski, T. Angew.
Chem., Int. Ed. 2004, 43, 788. (d) Thayer, A. M. Chem. Eng. News
006, 84, 29. (e) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T.
0
,R
−
3
−1
−1
1
0
M h (mg-Enz) from the slope of the c vs t plot at t = 0. The
acetylation of antipode (S)-1 was carried out by the same procedure,
except for the amount of CAL-B powder (30.0 mg) and the sampling
interval (24 h). The c vs t plot determined the initial rate (v ) to be
0
,S
−7
−1
−1
4
.03 × 10 M h (mg-Enz) . The E value was calculated from these
4
initial rates to be 1.22 × 10 at ε = 11.2. The E vs ε plot (Figure 1) was
obtained by repeating this procedure using toluene−acetonitrile
mixtures with varying composition ratios as reaction solvents.
The E vs ε plot for each of alcohols 3, 5, and 7 was obtained by a
procedure similar to that mentioned above. Racemic alcohol was used
as a substrate, and the enantiomeric excess of the resulting ester (eep)
was determined by GC analysis (column, Restek, RTβDEXse (0.25
mm i.d. × 30 m); oven temperature, 130 °C for ester 4, 95 °C for
esters 6 and 8; detector, FID).
(
(
̈
2
27
28
29
Org. Biomol. Chem. 2006, 4, 2337. (f) Pollard, D. In Organic Synthesis
with Enzymes in Non-aqueous Solvents; Carrea, G., Riva, S., Eds.; Wiley-
VCH: Weinheim, Germany, 2008; pp 169−188.
The NMR spectra of compounds 2, 6, and 8 osbtained by the
acetylation are essentially identical with those reported in the
literature.
(
3) (a) Cotterill, I. C.; Sutherland, A. G.; Roberts, S. M.; Grobbauer,
Compound 4: colorless oil; IR (neat) 3034, 2934, 1731, 1498,
455, 1372, 1240, 957, 751, 698 cm ; H NMR (400 MHz) δ 1.29 (d,
H, J = 6.3 Hz), 1.95 (s, 3H), 2.55 (dd, 1H, J = 15.5, 5.5 Hz), 2.68
−1 1
1
3
R.; Spreitz, J.; Faber, K. J. Chem. Soc., Perkin Trans. 1 1991, 1365.
(b) Mattiasson, B.; Holst, O. Extractive Bioconversions; Marcel Dekker:
New York, 1991. (c) Vermue, M. H.; Tramper, J. Pure Appl. Chem.
̈
1995, 67, 345. (d) Khmelnitsky, Y. L.; Rich, J. O. Curr. Opin. Chem.
Biol. 1999, 3, 47. (e) Mahler, M.; Reichardt, B.; Hartjen, P.; van Luzen,
J.; Meier, C. Chem. Eur. J. 2012, 18, 11046. (f) Amin, R.; Chen, J.-X.;
Cotterill, I. C.; Emirich, D.; Ganley, D.; Khmelnitsky, Y.; McLaws, M.
D.; Michels, P. C.; Eric Schwartz, C.; Thomas, D.; Yan, J.; Yang, Q.
Org. Process Res. Dev. 2013, 17, 915.
(
1
6
dd, 1H, J = 15.5, 7.7 Hz), 5.13 (d, 1H, J = 15.0 Hz), 5.25−5.33 (m,
13
H), 7.32−7.37 (m, 5H); C NMR (100 MHz) δ 20.0, 21.2, 41.0,
6.6, 67.4, 128.4, 128.5, 128.7, 135.9, 170.2, 170.4; HRMS (FAB)
+
calcd for C H O (M + H) 237.1127, found 237.1126.
13
17
4
Typical Procedure for the Analysis of ε Dependence of
Michaelis Constant (K ) and Maximum Velocity (V ) for CAL-
m
max
B-Catalyzed Acetylation. The initial rate of the acetylation of
alcohol 1 was determined for each enantiomer by the same procedure
as that mentioned for the analysis of the ε dependence of E with
varying concentrations of alcohol 1 (1.0, 1.5, 2.0, and 2.5 M) in
toluene−acetonitrile (3/1, v/v (ε = 11.2)). Using the relation between
the concentration of alcohol 1 and the initial rate, K and V were
(4) (a) Pam
(b) Pallissier, H. Tetrahedron 2003, 59, 8291. (c) Martín-Matute, B.;
Backvall, J.-E. Curr. Opin. Chem. Biol. 2007, 11, 226. (d) Truppo, M. D.
̀
̈
ies, O.; Backvall, J.-E. Chem. Rev. 2003, 103, 3427.
̈
In Asymmetric Catalysis on Industrial Scale, 2nd ed.; Blaser, H.-J.,
Federsel, H.-J., Eds.; Wiley-VCH: Weinheim, Germany, 2011; Chapter
5, pp 397−414.
(5) Reviews: (a) Brink, L. E. S.; Tramper, J.; Luyben, K. Ch. A. M.;
Van’t Riet, K. Enzyme Microb. Technol. 1988, 10, 736. (b) Dordick, J. S.
Enzyme Microb. Technol. 1989, 11, 194. (c) Klibanov, A. M. Trends
Biochem. Sci. 1989, 14, 141. (d) van Rantwijk, F.; Sheldon, R. A.
Tetrahedron 2004, 60, 501. (e) Ghanem, A.; Aboul-Enein, H. Y.
m
max
determined by Lineweaver−Burk plots. The K vs ε plot (Figure 2)
m
and V
vs ε plot (Figure 3) were obtained by repeating this
max
procedure using toluene−acetonitrile mixtures with varying composi-
tion ratios as reaction solvents.
ASSOCIATED CONTENT
■
̂
Tetrahedron: Asymmetry 2004, 15, 3331. (f) Chenevert, R.; Pelchat, N.;
*
S
Supporting Information
Jacques, F. Curr. Org. Chem. 2006, 10, 1067. (g) Hydrolases in Organic
Synthesis, 2nd ed.; Bornscheuer, U. T., Kazlauskas. R. J., Eds.; Wiley-
VCH: Weinheim, Germany, 2006. (h) Reference 1e, Chapter 3, pp
Figures and tables giving changes in the chemical shifts of
alcohols 1 and 3 depending on the solvent permittivity, ε
dependence of initial rate for the acetylation of alcohols 1 and
3
(
15−390.
6) Selected reviews: (a) Wescott, C. R.; Klibanov, A. M. Biochim.
3
, and change in the chemical shift of alcohol 7 upon addition
Biophys. Acta 1994, 1206, 1. (b) Carrea, G.; Ottolina, G.; Riva, S.
Trends Biotechnol. 1995, 13, 63. (c) Carrea, G.; Riva, S. Angew. Chem.,
Int. Ed. 2000, 39, 2226. (d) Halling, P. J. Curr. Opin. Chem. Biol. 2000,
4, 74. (e) Berglund, P. Biomol. Eng. 2001, 18, 13.
1
of nitro compound 12, data for Figures 1−3 and 6, and H and
1
3
F
dx.doi.org/10.1021/jo502521e | J. Org. Chem. XXXX, XXX, XXX−XXX