COMMUNICATIONS
[6] a) L. Karpaviciene, I. Cikotiene, Org. Lett. 2013, 15,
224; b) M.-C. P. Yeh, M.-N. Lin, C.-H. Hsu, C.-J. Liang,
J. Org. Chem. 2013, 78, 12381; c) A. Saito, J. Kasai, Y.
Odaira, H. Fukaya, Y. Hanzawa, J. Org. Chem. 2009,
74, 5644; d) L. Zhu, Z.-G. Xi, J. Lv, S. Luo, Org. Lett.
2013, 15, 4496; e) K. Bera, S. Sarkar, S. Jalal, U. Jana, J.
Org. Chem. 2012, 77, 8780; f) K. Bera, S. Sarkar, S.
Biswas, S. Maiti, U. Jana, J. Org. Chem. 2011, 76, 3539;
g) Y. Jung, I. Kim, J. Org. Chem. 2015, 80, 2001.
riety of heteroalkynes such as ynol ethers, ynamides,
and thioalkynes are well applicable for this reaction,
giving (E)-a,b-unsaturated esters, amides, and thioest-
ers in high yields with good functional group compati-
bility. The synthetic utility of this reaction is well
demonstrated by the facile synthesis of (E)-a,b-unsa-
turated aldehydes, (E)-a,b-unsaturated ketones, and
branched alcohols from the resultant products.
[7] M. Ochiai, A. Yoshimura, T. Mori, Y. Nishi, M. Hirobe,
J. Am. Chem. Soc. 2008, 130, 3742.
[8] W. Zhao, Z. Li, J. Sun, J. Am. Chem. Soc. 2013, 135,
4680.
Experimental Section
[9] a) M. W. C. Robinson, K. S. Pillinger, I. Mabbett, D. A.
Timms, A. E. Graham, Tetrahedron 2010, 66, 8377;
b) B. C. Ranu, U. Jana, J. Org. Chem. 1998, 63, 8212;
c) J. Meinwald, S. S. Labana, M. S. Chadha, J. Am.
Chem. Soc. 1963, 85, 582.
Typical Procedure for the Synthesis of (E)-a,b-
Unsaturated Carbonyl Compounds via the AgBF4-
Catalyzed Tandem Epoxide Rearrangement/ACM
Reaction
To a solution of 1a (43.8 mg, 0.3 mmol) in 1 mL of 1,4-diox-
ane was added AgBF4 (4.9 mg, 0.025 mmol), and 2a (30 mg,
0.25 mmol) under a nitrogen atmosphere. After stirring at
808C for 2 h, the reaction mixture was quenched with water,
extracted with EtOAc, washed with brine, dried over anhy-
drous Na2SO4, and concentrated. Column chromatography
on silica gel (EtOAc/petroleum ether=1:100) gave 3a as
a colorless oil; yield: 53 mg (80%). 1H NMR (600 MHz,
CDCl3): d=7.41–7.31 (m, 2H), 7.35–7.31 (m, 1H), 7.30–7.26
(m, 2H), 7.26–7.22 (m, 2H), 7.22–7.17 (m, 2H), 7.14–7.10
(m, 2H), 4.20 (q, J=7.1 Hz, 2H), 3.42 (d, J=7.8 Hz, 2H),
1.24 (t, J=7.1 Hz, 3H); 13C NMR (151 MHz, CDCl3): d=
167.0, 142.3, 138.8, 135.0, 134.5, 129.7, 128.6, 128.5, 128.1,
127.6, 126.4, 60.9, 35.6, 14.2; HR-MS (ESI): m/z=289.1205,
calcd for C18H18NaO2 (M+Na)+: 289.1204.
[10] a) L. Hu, Q. Cui, X. Chen, Z. Tan, G. Zhu, J. Org.
Chem. 2016, 81, 4861; b) C. Cheng, S. Liu, G. Zhu, Org.
Lett. 2015, 17, 1581; c) L. Hu, C. Che, Z. Tan, G. Zhu,
Chem. Commun. 2015, 51, 16641; d) Y. Yang, L. Wang,
J. Zhang, Y. Jin, G. Zhu, Chem. Commun. 2014, 50,
2347; e) G. Liu, W. Kong, J. Che, G. Zhu, Adv. Synth.
Catal. 2014, 356, 3314; f) W. Cui, J. Yin, R. Zheng, C.
Cheng, Y. Bai, G. Zhu, J. Org. Chem. 2014, 79, 3487.
[11] For selected reports on heteroatom-substituted acety-
lenes since 2015, see: a) H. Liu, Y. Yang, S. Wang, J.
Wu, X.-N. Wang, J. Chang, Org. Lett. 2015, 17, 4472;
b) S. K. Pawar, R.-L. Sahani, R. Liu, Chem. Eur. J.
2015, 21, 10843; c) L. Zhu, Y. Yu, Z. Mao, X. Huang,
Org. Lett. 2015, 17, 30; d) F. Pan, C. Shu, Y.-F. Ping, Y.-
F. Pan, P.-P. Ruan, Q.-R. Fei, L.-W. Ye, J. Org. Chem.
2015, 80, 10009; e) L. Li, B. Zhou, Y.-H. Wang, C. Shu,
Y.-F. Pan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed.
2015, 54, 8245; f) C. Shu, Y.-H. Wang, B. Zhou, X.-L.
Li, Y.-F. Ping, X. Lu, L.-W. Ye, J. Am. Chem. Soc. 2015,
137, 9567; g) R. Ding, Y. Li, C. Tao, B. Cheng, H. Zhai,
Org. Lett. 2015, 17, 3994; h) M. H. Babu, V. Dwivedi,
R. Kant, M. S. Reddy, Angew. Chem. Int. Ed. 2015, 54,
3783; i) S. Fabig, G. Haberhauer, R. Gleiter, J. Am.
Chem. Soc. 2015, 137, 1833; j) H. Huang, L. Tang, Q.
Liu, Y. Xi, G. He, H. Zhu, Chem. Commun. 2016, 52,
5605; k) H. Huang, J. Fan, G. He, Z. Yang, X. Jin, Q.
Liu, H. Zhu, Chem. Eur. J. 2016, 22, 2532; l) Y. Tokimi-
zu, M. Wieteck, M. Rudolph, S. Oishi, N. Fujii, A. S. K.
Hashmi, H. Ohno, Org. Lett. 2015, 17, 604; m) H. Jin,
L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K.
Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794; n) C. F.
Heinrich, I. Fabre, L. Miesch, Angew. Chem. Int. Ed.
2016, 55, 5170; o) I. Talbi, C. Alayrac, J.-F. Lohier, S.
Touil, B. Witulski, Org. Lett. 2016, 18, 2656. For select-
ed reviews, see: p) X.-N. Wang, H.-S. Yeom, L.-C.
Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung,
Acc. Chem. Res. 2014, 47, 560; q) K. A. DeKorver, H.
Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P.
Hsung, Chem. Rev. 2010, 110, 5064; r) G. Evano, A.-C.
Gaumont, C. Alayrac, I. E. Wrona, J. R. Giguere, O.
Delacroix, A. Bayle, K. Jouvin, C. Theunissen, J. Gati-
gnol, A. C. Silvanus, Tetrahedron 2014, 70, 1529; s) Y.
Minami, T. Hiyama, Acc. Chem. Res. 2016, 49, 67;
t) T. G. Minehan, Acc. Chem. Res. 2016, 49, 1168.
Acknowledgements
This work is supported by the Science Technology Depart-
ment of Zhejiang Province, China (2015C31030) and the Na-
tional Natural Science Foundation of China (21172199 and
21672191).
References
[1] a) H. Vieregge, J. F. Arens, Recl. Trav. Chim. 1957, 76,
546; b) H. Vieregge, H. J. T. Bos, J. F. Arens, Recl. Trav.
Chim. 1959, 78, 664; c) H. Vieregge, J. F. Arens, Recl.
Trav. Chim. 1959, 78, 921; d) H. Vieregge, H. M.
Schmidt, J. Renema, H. J. T. Bos, J. F. Arens, Recl.
Trav. Chim. 1966, 85, 929.
[2] a) R. P. Hsung, C. A. Zificsak, L.-L. Wei, C. J. Douglas,
H. Xiong, J. A. Mulder, Org. Lett. 1999, 1, 1237;
b) K. C. M. Kurtz, R. P. Hsung, Y. Zhang, Org. Lett.
2006, 8, 231.
[3] M. Curini, F. Epifano, F. Maltese, O. Rosati, Synlett
2003, 552.
[4] J. U. Rhee, M. J. Krische, Org. Lett. 2005, 7, 2493.
[5] a) T. Jin, Y. Yamamoto, Org. Lett. 2007, 9, 5259; b) T.
Jin, F. Yang, C. Liu, Y. Yamamoto, Chem. Commun.
2009, 45, 3533.
Adv. Synth. Catal. 0000, 000, 0 – 0
5
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!