A R T I C L E S
Ja¨ger et al.
template-directed synthesis,10 for controlled self-assembly,11 for
facilitating charge transfer in DNA,12 to detect the presence of
abasic sites in a DNA,13 and other purposes.14 Another interest-
ing field of application of functionalized nucleic acids is the in
vitro evolution of aptamers, DNAzymes, or ribozymes for
molecular recognition and catalysis.5 The goal in this research
area is to generate molecules that are both easy to copy and
vary, like DNA, and chemically adept, like proteins.
Chemical modifications can be incorporated into oligonucle-
otides via the heterocyclic nucleobases, in the sugar unit, or at
the backbone level. While short highly modified DNA strands
with less than 50-60 nucleotides are accessible through
chemical solid-phase synthesis, the generation of longer modi-
fied oligonucleotides following this route is either very difficult,
or impossible. In particular, the construction of longer DNA
strands that contain various different modifications throughout
the molecule remains elusive. Thus, strategies that allow one
to introduce a large variety of different modifications into the
same nucleic acid sequence at once might further expand the
applicability of chemically modified DNAs. The ability to
enzymatically replicate a DNA or RNA molecule that is
functionalized at high density in a template-directed fashion
would provide access to longer sequences that are difficult to
obtain synthetically. This is useful, for example, for generating
combinatorial libraries of DNA molecules with expanded chem-
ical functionality from which aptamers and catalysts with ex-
panded structural and functional properties can be isolated by
in vitro evolution.5 Such methodology is also required for multi-
plex sequencing,15 and other purposes such as the incorporation
of artificial base pairs for extending the genetic alphabet.16
It has been shown that up to two different modified
nucleotides can be enzymatically polymerized by primer exten-
sion reactions or polymerase chain reactions (PCR) on a DNA
template.15,17 Earlier, we have reported the first enzymatic
synthesis of a high-density functionalized DNA (fDNA) in
which every base position was equipped with a different
functional group. This fDNA was generated by primer extension
using a natural model template of almost equal base distribu-
tion.18 Recently, we could show that a high-density fDNA could
in turn serve as a template for the polymerase-mediated
generation of a fully functionalized DNA double-strand and can
be amplified by PCR under certain conditions.19
To further expand the scope of the enzymatic generation and
amplification of functionalized DNA and to also explore
potential limitations of this approach, we have now synthesized
an increased set of modified dNTPs and investigated their
template-directed enzymatic incorporation into fDNA. We
provide a systematic analysis of the sequence requirements by
investigating more demanding DNA templates that consist of
multiple nucleotide repetitions. Likewise, we assayed a variety
of polymerases for their capability to incorporate modified
dNTPs in different sequence contexts and identified the most
generic ones. We show that a broad variety of chemical
modifications can be tolerated by the identified DNA poly-
merases under certain conditions, regardless of their chemical
nature. We further investigated whether functionalized DNA
double-strands can be amplified from the demanding templates
by PCR. We also performed an analysis of possible structural
alterations of functionalized DNA duplexes as a function of the
nature and density of the modification. With this analysis, we
have established a platform for the generation and amplification
of DNAs functionalized at various densities with different chem-
ical modifications for a large variety of potential applications.
(7) (a) Sorensen, M. D. K., L.; Bryld, T.; Hakansson, A. E.; Verbeure, B.;
Gaubert, G.; Herdewijn, P.; Wengel, J. J. Am. Chem. Soc. 2002, 124, 2164-
2176. (b) Declercq, R.; Van Aerschot, A.; Read, R. J.; Herdewijn, P.; Van
Meervelt, L. J. Am. Chem. Soc. 2002, 124, 928-933. (c) Summerer, D.;
Marx, A. J. Am. Chem. Soc. 2002, 124, 910-911. (d) Tanaka, K.; Tengeiji,
A.; Kato, T.; Toyama, N.; Shionoya, M. Science 2003, 299, 1212-1213.
(e) Zhu, L.; Lukeman, P. S.; Canary, J. W.; Seeman, N. C. J. Am. Chem.
Soc. 2003, 125, 10178-10179. (f) Sorensen, M. D.; Petersen, M.; Wengel,
J. Chem. Commun. 2003, 2130-2131. (g) Brotschi, C.; Leumann, C. J.
Angew. Chem., Int. Ed. 2003, 42, 1655-1658. (h) Pallan, P. S.; Wilds, C.
J.; Wawrzak, Z.; Krishnamurthy, R.; Eschenmoser, A.; Egli, M. Angew.
Chem., Int. Ed. 2003, 42, 5893-5895. (i) Liu, H.; Lynch, S. R.; Kool, E.
T. J. Am. Chem. Soc. 2004, 126, 6900-6905. (j) Liu, H. B.; Gao, J. M.;
Maynard, L.; Saito, Y. D.; Kool, E. T. J. Am. Chem. Soc. 2004, 126, 1102-
1109. (k) Sun, B. W.; Babu, B. R.; Sorensen, M. D.; Zakrzewska, K.;
Wengel, J.; Sun, J. S. Biochemistry 2004, 43, 4160-4169. (l) Buchini, S.;
Leumann, C. J. Angew. Chem., Int. Ed. 2004, 43, 3925-3928. (m) Zahn,
A.; Brotschi, C.; Leumann, C. J. Chemistry 2005, 11, 2125-2129. (n)
Brotschi, C.; Mathis, G.; Leumann, C. J. Chemistry 2005, 11, 1911-1923.
(8) (a) Kool, E. T. Curr. Opin. Chem. Biol. 2000, 4, 602-608. (b) Tae, E. L.;
Wu, Y.; Xia, G.; Schultz, P. G.; Romesberg, F. E. J. Am. Chem. Soc. 2001,
123, 7439-7440. (c) Summerer, D.; Marx, A. J. Am. Chem. Soc. 2002,
124, 910-911. (d) Summerer, D.; Marx, A. Angew. Chem., Int. Ed. 2001,
40, 3693. (e) Strerath, M.; Summerer, D.; Marx, A. ChemBioChem 2002,
3, 578-580. (f) Strerath, M.; Cramer, J.; Restle, T.; Marx, A. J. Am. Chem.
Soc. 2002, 124, 11230-11231. (g) Berger, M.; Luzzi, S. D.; Henry, A. A.;
Romesberg, F. E. J. Am. Chem. Soc. 2002, 124, 1222-1226. (h) Henry,
A. A.; Romesberg, F. E. Curr. Opin. Chem. Biol. 2003, 7, 727-733. (i)
Kool, E. T., Acc. Chem. Res. 2002, 35, 936-943. (j) Chaput, J. C.; Ichida,
J. K.; Szostak, J. W. J. Am. Chem. Soc. 2003, 125, 856-857. (k) Chaput,
J. C.; Szostak, J. W. J. Am. Chem. Soc. 2003, 125, 9274-9275.
Results and Discussion
1. Design and Synthesis of Modified Nucleotides. We
synthesized various deoxynucleoside triphosphate (dNTP) ana-
logues of all four natural nucleotides bearing basic, acidic, or
(9) Grasby, J. A.; Gait, M. J. Biochimie 1994, 76, 1223-34.
(15) (a) Brakmann, S.; Lo¨bermann, S. Angew. Chem., Int. Ed. 2001, 40, 1427-
1429. (b) Brakmann, S. Methods Mol. Biol. 2004, 283, 137-144.
(16) (a) Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A. Nature 1990,
343, 33-37. (b) Switzer, C. Y.; Moroney, S. E.; Benner, S. A. Biochemistry
1993, 32, 10489-10496. (c) Atwell, S.; Meggers, E.; Spraggon, G.; Schultz,
P. G. J. Am. Chem. Soc. 2001, 123, 12364-12367. (d) Henry, A. A.; Olsen,
A. G.; Matsuda, S.; Yu, C.; Geierstanger, B. H.; Romesberg, F. E. J. Am.
Chem. Soc. 2004, 126, 6923-6931. (e) Johnson, S. C.; Marshall, D. J.;
Harms, G.; Miller, C. M.; Sherrill, C. B.; Beaty, E. L.; Lederer, S. A.;
Roesch, E. B.; Madsen, G.; Hoffman, G. L.; Laessig, R. H.; Kopish, G. J.;
Baker, M. W.; Benner, S. A.; Farrell, P. M.; Prudent, J. R. Clin. Chem.
2004, 50, 2019-2027. (f) Hutter, D.; Benner, S. A. J. Org. Chem. 2003,
68, 9839-9842.
(10) (a) Li, X.; Liu, D. R. Angew. Chem., Int. Ed. 2004, 43, 4848-4870. (b)
Kanan, M. W.; Rozenman, M. M.; Sakurai, K.; Snyder, T. M.; Liu, D. R.
Nature 2004, 431, 545-549. (c) Sakurai, K.; Snyder, T. M.; Liu, D. R. J.
Am. Chem. Soc. 2005, 127, 1660-1661.
(11) (a) Niemeyer, C. M.; Adler, M. Angew. Chem., Int. Ed. 2002, 41, 3779-
3783. (b) Niemeyer, C. M.; Ceyhan, B.; Hazarika, P. Angew. Chem., Int.
Ed. 2003, 42, 5766-5770. (c) Waybright, S. M.; Singleton, C. P.; Wachter,
K.; Murphy, C. J.; Bunz, U. H. J. Am. Chem. Soc. 2001, 123, 1828-1833.
(d) Scheffler, M.; Dorenbeck, A.; Jordan, S.; Wu¨stefeld, M.; von Kied-
rowski, G. Angew. Chem., Int. Ed. 1999, 38, 3311-3315. (e) Matsuura,
K.; Hibino, M.; Ikeda, T.; Yamada, Y.; Kobayashi, K. Chemistry 2004,
10, 352-359. (f) Vogel, S.; Rohr, K.; Dahl, O.; Wengel, J. Chem. Commun.
2003, 1006-1007.
(17) (a) Sakthivel, K.; Barbas, C. F., III. Angew. Chem., Int. Ed. 1998, 37, 2872.
(b) Perrin, D. M.; Garestier, T.; He´le`ne, C. Nucleosides Nucleotides 1999,
18, 377-391. (c) Gourlain, T.; Sidorov, A.; Mignet, N.; Thorpe, S. J.; Lee,
S. E.; Grasby, J. A.; Williams, D. M. Nucleic Acids Res. 2001, 29, 1898-
1905. (d) Roychowdhury, A.; Illangkoon, H.; Hendrickson, C. L.; Benner,
S. A. Org. Lett. 2004, 6, 489-492. Mehedi Masud, M.; Ozaki-Nakamura,
A.; Kuwahara, M.; Ozaki, H.; Sawai, H. ChemBioChem 2003, 4, 584-
588.
(12) (a) Weizman, H.; Tor, Y. J. Am. Chem. Soc. 2001, 123, 3375-3376. (b)
Weizman, H.; Tor, Y. J. Am. Chem. Soc. 2002, 124, 1568-1569. (c) Giese,
B. Curr. Opin. Chem. Biol. 2002, 6, 612-618. (d) Tanaka, K.; Yamada,
Y.; Tengeiji, A.; Kato, T.; Toyama, N.; Takezawa, Y.; Yori, M.; Shiro,
M.; Shionoya, M. Nucleic Acids Res. Suppl. 2003, 121-122. (e) Behrens,
C.; Carell, T. Chem. Commun. 2003, 1632-1633. (f) Giese, B.; Carl, B.;
Carl, T.; Carell, T.; Behrens, C.; Hennecke, U.; Schiemann, O.; Feresin,
E. Angew. Chem., Int. Ed. 2004, 43, 1848-1851.
(18) Thum, O.; Ja¨ger, S.; Famulok, M. Angew. Chem., Int. Ed. 2001, 40, 3990-
(13) Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784-10785.
(14) Verma, S.; Ja¨ger, S.; Thum, O.; Famulok, M. Chem. Rec. 2003, 3, 51-60.
3993.
(19) Ja¨ger, S.; Famulok, M. Angew. Chem., Int. Ed. 2004, 43, 3337-3340.
9
15072 J. AM. CHEM. SOC. VOL. 127, NO. 43, 2005