Fe(II)-8-QUINOLINOL/MCM-41-CATALYZED PHENOL HYDROXYLATION
41
The successful hydroxylation of phenol and better ac-
tivity compared with TS-1 (Table 1) demonstrated here
mean that we can establish a new route for diphenol
production.
REFERENCES
1. Maggioni, P., Ger. Offen. 2,341, 743 (1974).
2. Eliseev, A. V., React. Kinet. Catal. Lett. 43, 419 (1991).
3. Hocking, M. B., J. Chem. Tech. Biotech. Chem. Technol. 35A, 365
(1985).
4. Maggioni, P., Chim. Ind. (Milan) 59, 239 (1977).
5. Brodskii, A. I., Zh. Obshch. Khim. 32, 2273 (1962).
6. Eremeev, A. P., Zh. Prikl. Khim. 53, 386 (1980).
7. Masri, Y., and Hronec, M., in “Dioxygen Activation and Homoge-
neous Catalytic Oxidation” (L. I. Simandico, Ed.), p. 455. Elsevier,
Amsterdam, 1991.
8. Strumila, G. B., Trans. Tech. Sect. Can. Pulp Pap. Assoc. 3, 119
(1977).
9. Rao, P. V., Indian J. Chem. Sect. A 19, 257 (1980).
10. Huybrechts, D. R. C., Catal. Lett. 8, 273 (1991).
11. Zombeck, A., J. Am. Chem. Soc. 103, 7580 (1981).
12. Norman, H., Stucky, G. D., and Tolman, C. A., J. Chem. Soc., Chem.
Commun., 1521 (1986).
13. Nakamuura, M., Tatsumi, T., and Tominaga, H., Bull. Chem. Soc. Japan
63, 3334 (1990).
14. Bowers, C., and Dutta, P. K., J. Catal. 122, 271 (1990).
15. Clerici, M. G., Appl. Catal. 68, 249 (1991).
16. Clerici, M. G., Bellussi, G., and Romano, U., J. Catal. 129, 159 (1991).
17. Reddy, J. S., Kumar, R., and Ratnasamy, P., Appl. Catal. 58, L1 (1990).
18. Reddy, J. S., and Sivasanker, S., Catal. Lett. 11, 241 (1991).
19. Norman, H., J. Coord. Chem. 19, 25 (1988).
20. Lier, R. K., in “The Chemistry of Silica,” p. 50. Wiley, New York,
1979.
FIG. 10. Concentration change of catechol (a), hydroquinone (b), and
benzoquinone (c). Reaction conditions: medium, water; pH 7.0; 50ꢂC;
time, 6 h; volume of reaction mixture, 15 ml; catechol = hydroquinone =
5 ꢃ 10ꢁ3 mol; molar ratio: catechol = hydroquinone/H2O2/catalyst (molar-
ity of the support complex) = 1000/1000/1.
be due to the adsorption and static coulombic function be-
tween the pore wall of MCM-41 and [Fe(Qx)3]2+ species.
Iron(II)–8-quinolinol/MCM-41 has better catalytic activ-
ity than iron(II)–8-quinolinol and Fe2+ (Fenton agent).
The better catalytic activity of the support iron(II)–8-
quinolinol/MCM-41 might be attributed to the higher con-
centration of catalyst and substrates in the channels of
MCM-41 and the distortion of iron(II)–8-quinolinol by the
pore wall of MCM-41.
Moreover, the channels are large enough not only to al-
low phenol and H2O2 to approach catalytic centers freely,
but also to allow products to move out easily. In this way, we
could solve the problems caused by the limited pore sizes
of microporous zeolite-encapsulated metal complexes. It
might be possible for the larger ligand metal complexes to
be immobilized in the channel and for a large substrate to
enter the pore freely.
21. Yanagisawa, T., Shimizu, T., Kazuyuki, K., and Kato, C., Bull. Chem.
Soc. Japan 63, 988 (1990).
22. Landis, M. E., J. Am. Chem. Soc. 113, 3189 (1991).
23. Beek, J. S., U.S. Patent 5057296; Kresge, C. T., Leonowicz, M. E., Roth,
W. J., Vartuli, J. C., and Beek, J. S., U.S. Patents 5098684 and 55102643;
Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beek,
J. S., Nature 359, 710 (1992).
24. Jones, M. M., in “Ligand Reactivity and Catalysis.” p. 99. Academic
Press, New York, 1968.
25. Walter, C. S., Charles, N. S., and Ralph, L. W., in “Hydrogen Peroxide,”
p. 338. Waverly Press, New York, 1955.
26. Motojima, K., Bunseki Kagaku 8, 66 (1959).
27. Roger, A., and Sheldon, J. K., in “Kochi Metal-Catalyzed Oxidation
of Organic Compounds,” p. 35. Academic Press, New York, 1981.
28. Sosnovisky, G., in “Organic Peroxides” (D. Swern, Ed.), Vol. 2, p. 269.
Wiley, NewYork, 1971;Metelitsa, D. I.,RussChem. Rev. 40, 563(1971).
29. Walling, C., Accts. Chem. Res. 8, 125 (1975).