Journal of the American Chemical Society
Page 16 of 19
Butadienyl)Magnesium Chloride with Alkyl or Aryl Iodides. Bull.
Enantioselective Total Synthesis of (+)-Asteriscanolide. J. Am.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Chem. Soc. Jpn. 1981, 54, 2831–2832. (b) Sahlberg, C.; Quader, A.;
Claesson, A. Synthesis of Conjugated Dienes by Nickel-Catalyzed
Reactions of 1,3-Alkadien-2-yl Phosphates with Grignard Reagents.
Tetrahedron Lett. 1983, 24, 5137–5138. (c) Karlström, A. S. E.;
Rönn, M.; Thorarensen, A.; Bäckvall, J.-E. A Versatile Route to 2-
Substituted Cyclic 1,3-Dienes via a Copper(I)-Catalyzed Cross-
Coupling Reaction of Dienyl Triflates with Grignard Reagents. J. Org.
Chem. 1998, 63 , 2517–2522. (d) Karlström, A. S. E.; Itami, K.;
Bäckvall, J.-E. Nickel-Catalyzed Cross-Coupling of Dienyl
Phosphates with Grignard Reagents in the Synthesis of 2-Substituted
Chem. Soc. 1988, 110, 5904–5906. (e) Wender, P. A.; Tebbe, M. J.
Nickel(0)-Catalyzed Intramolecular [4+4] Cycloadditions: 5. The
Type II Reaction in the Synthesis of Bicyclo[5.3.1]Undecadienes.
Synthesis. 1991, 1089–1094. (f) Wender, P. A.; Nuss, J. M.; Smith,
D. B.; Suárez-Sobrino, A.; Vågberg, J.; Decosta, D.; Bordner, J.
Transition Metal Catalyzed Cycloadditions: An Intramolecular [4 +
4] Cycloaddition Strategy for the Efficient Synthesis of
Dicyclopenta[a,d]Cyclooctene 5−8−5 Ring Systems. J. Org. Chem.
1997, 62, 4908–4909.
19. (a) van Leeuwen, P. W. N. M.; Roobeek, C. F. On the Mechanism of
the Nickel-Catalysed Regioselective Cyclodimerization of Isoprene.
Tetrahedron, 1981, 37, 1973–1983. (b) Jolly, P. W. Nickel
Catalyzed Oligomerization of 1,3-Dienes and Related Reactions. In
Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F.
G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; pp 671–711. (c)
Brun, P.; Tenaglia, A.; Waegell, B. Regio and Stereo Selective
Synthesis of Disubstituted Cyclooctadienes. Tetrahedron Lett. 1983,
24, 385–388. (d) Tenaglia, A.; Brun, P.; Waegell, B. Nickel-Catalyzed
Oligomerization of Functionalized Conjugated Dienes. J.
Organomet. Chem. 1985, 285, 343–357.
20. (a) Mallien, M.; Haupt, E. T. K.; tom Dieck, H. Catalytic
Isomerization of Methylated 1,5-Cyclooctadienes. Angew. Chem. Int.
Ed. 1988, 27, 1062–1064. (b) Wu, C.-Y.; Swift, H. E. Diolefin
Reactions Catalyzed by Transition Metal-Schiff Base Complexes. J.
Catal. 1972, 24, 510–520.
1
,3-Dienes. J. Org. Chem. 1999, 64, 1745–1749. (e) Cahiez, G.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Habiak, V.; Gager, O. Efficient Preparation of Terminal Conjugated
Dienes by Coupling of Dienol Phosphates with Grignard Reagents
under Iron Catalysis. Org. Lett. 2008, 10, 2389–2392. (f) Wang, G.;
Mohan, S.; Negishi, E. Highly Selective Synthesis of Conjugated
Dienoic and Trienoic Esters via Alkyne Elementometalation–Pd-
Catalyzed Cross-Coupling. Proc. Natl. Acad. Sci. USA, 2011, 108,
1
1344–11349. (g) Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. A General
Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-
Substituted 1,3-Dienes. ACS Catal. 2018, 8, 1392–1398. (h)
Olivares, A. M.; Weix, D. J. Multimetallic Ni- and Pd-Catalyzed
Cross-Electrophile Coupling To Form Highly Substituted 1,3-
Dienes. J. Am. Chem. Soc. 2018, 140, 2446–2449. (i) Nguyen, V. T.;
Dang, H. T.; Pham, H. H.; Nguyen, V. D.; Flores-Hansen, C.; Arman,
H. D.; Larionov, O. V. Highly Regio- and Stereoselective Catalytic
Synthesis of Conjugated Dienes and Polyenes. J. Am. Chem. Soc.
2018, 140, 8434–8438.
21. Mechanistic study of the iron-catalyzed [4+4]-cyclodimerization of
Me
butadiene was described recently, implicating ( DI)Fe(COD) as the
1
5. (a) Hansen, A. L.; Skrydstrup, T. Regioselective Heck Couplings of
α,β-Unsaturated Tosylates and Mesylates with Electron-Rich Olefins.
Org. Lett. 2005, 7, 5585–5587. (b) Hansen, A. L.; Ebran, J.-P.;
Ahlquist, M.; Norrby, P.-O.; Skrydstrup, T. Heck Coupling with
Nonactivated Alkenyl Tosylates and Phosphates: Examples of
Effective 1,2-Migrations of the Alkenyl Palladium(II) Intermediates.
Angew. Chem. Int. Ed. 2006, 45, 3349–3353. (c) Zhou, P.; Jiang, H.;
Huang, L.; Li, X. Acetoxypalladation of Unactivated Alkynes and
Capture with Alkenes to Give 1-Acetoxy-1,3-Dienes Taking
Dioxygen as Terminal Oxidant. Chem. Commun. 2011, 47, 1003–
on-cycle resting state complex (see ref 11b). However, given the
discrepancy between selectivities and rates reported for the [4+4]-
cycloaddition of substituted 1,3-dienes relative to butadiene, it was
not clear at the outset of this study whether these insights would be
transferrable.
22. (a) Small, B. L. Discovery and Development of Pyridine-Bis(Imine)
and Related Catalysts for Olefin Polymerization and Oligomerization.
Acc. Chem. Res. 2015, 48, 2599–2611. (b) Chirik, P. J. Carbon–
Carbon Bond Formation in a Weak Ligand Field: Leveraging Open-
Shell First-Row Transition-Metal Catalysts. Angew. Chem. Int. Ed.
2017, 56 , 5170–5181.
23. (a) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J.
Iron-Catalyzed [2π + 2π] Cycloaddition of α,ω-Dienes: The
Importance of Redox-Active Supporting Ligands. J. Am. Chem. Soc.
2006, 128, 13340–13341. (b) Hoyt, J. M.; Schmidt, V. A.; Tondreau,
A. M.; Chirik, P. J. Iron-Catalyzed Intermolecular [2+2]
Cycloadditions of Unactivated Alkenes. Science, 2015, 349, 960–
963.
24. Russell, S. K.; Lobkovsky, E.; Chirik, P. J. Iron-Catalyzed
Intermolecular [2π + 2π] Cycloaddition. J. Am. Chem. Soc. 2011,
133, 8858–8861.
25. Hoyt, J. M.; Sylvester, K. T.; Semproni, S. P.; Chirik, P. J. Synthesis
and Electronic Structure of Bis(Imino)Pyridine Iron Metallacyclic
Intermediates in Iron-Catalyzed Cyclization Reactions. J. Am. Chem.
Soc. 2013, 135, 4862–4877.
26. Schmidt, V. A.; Kennedy, C. R.; Bezdek, M. J.; Chirik, P. J. Selective
[1,4]-Hydrovinylation of 1,3-Dienes with Unactivated Olefins
Enabled by Iron Diimine Catalysts. J. Am. Chem. Soc. 2018, 140,
3443–3453.
27. (a) Chirik, P. J. Preface: Forum on Redox-Active Ligands. Inorg.
Chem. 2011, 50, 9737–9740. (b) Lyaskovskyy, V.; de Bruin, B.
Redox Non-Innocent Ligands: Versatile New Tools to Control
Catalytic Reactions. ACS Catal. 2012, 2, 270–279. (c) Luca, O. R.;
Crabtree, R. H. Redox-Active Ligands in Catalysis. Chem. Soc. Rev.
2013, 42, 1440–1459.
1
005. (d) Zheng, C.; Wang, D.; Stahl, S. S. Catalyst-Controlled
Regioselectivity in the Synthesis of Branched Conjugated Dienes via
Aerobic Oxidative Heck Reactions. J. Am. Chem. Soc. 2012, 134,
16496–16499. (e) Delcamp, J. H.; Gormisky, P. E.; White, M, C. Ox-
idative Heck Vinylation for the Synthesis of Complex Dienes and
Polyenes. J. Am. Chem. Soc. 2013, 135, 8460-8463. (f) Molloy, J. J.;
Seath, C. P.; West, M. J.; McLaughlin, C.; Fazakerley, N. J.; Kennedy,
A. R.; Nelson, D. J.; Watson, A. J. B. Interrogating Pd(II) Anion
Metathesis Using a Bifunctional Chemical Probe: A Transmetalation
Switch. J. Am. Chem. Soc. 2018, 140, 126–130.
1
6. (a) Ideses, R.; Shani, A. The Wittig Reaction: Comments on the
Mechanism and Application as a Tool in the Synthesis of Conjugated
Dienes. Tetrahedron 1989, 45, 3523–3534. (b) Dong, D.-J.; Li, H.-
H.; Tian, S.-K. A Highly Tunable Stereoselective Olefination of
Semistabilized Triphenylphosphonium Ylides with N-Sulfonyl
Imines. J. Am. Chem. Soc. 2010, 132, 5018–5020.
17. McAlpine, N. J.; Wang, L.; Carrow, B. P. A Diverted Aerobic Heck
Reaction Enables Selective 1,3-Diene and 1,3,5-Triene Synthesis
through C–C Bond Scission. J. Am. Chem. Soc. 2018, 140, 13634–
1
3639.
8. (a) Wender, P. A.; Ihle, N. C. Nickel-Catalyzed Intramolecular
4+4]-Cycloadditions: A New Method for the Synthesis of Polycycles
1
[
Containing Eight-Membered Rings. J. Am. Chem. Soc. 1986, 108,
4678–4679. (b) Wender, P. A.; Snapper, M. L. Intramolecular Nickel
Catalyzed Cycloadditions of Bis-Dienes: 3 Approaches to the Taxane
Skeleton. Tetrahedron Lett. 1987, 28, 2221–2224. (c) Wender, P.
A.; Ihle, N. C. Nickel-Catalyzed Intramolecular [4+4]
Cycloadditions: 2. Allylic Stereoinduction and Modelling Studies in
the Preparation of Bicyclo[6.4.0]Dodecadienes. Tetrahedron Lett.
1987, 28, 2451–2454. (d) Wender, P. A.; Ihle, N. C.; Correia, C. R.
D. Nickel-Catalyzed Intramolecular [4+4] Cycloadditions. 4.
28. (a) Lau, W.; Huffman, J.; Kochi, J. Electrochemical oxidation-
reduction of organometallic complexes. Effect of the oxidation state
on the pathways for reductive elimination of dialkyliron complexes.
Organometallics, 1982, 1, 155-169. (b) Joannou, M.; Darmon, J.;
3
3
Bezdek, M.; Chirik P. Exploring C(sp )–C(sp ) Reductive Elimina-
ACS Paragon Plus Environment