DOI: 10.1039/C5SC04521E
Page 5 of 6
EDGE ARTICLE
Chemical Science
Chemical Science
14.18,7a,7b,8f Aryl radical 13 then might react with 14 to produce
arylboronate 3 and a boryl radical anion 15.19 15 can also be viewed
Pintaric, S. Olivero, Y. Gimbert, P. Y. Chavant, E. Duñach, J. Am.
Chem. Soc. 2010, 132, 11825.
as an anionic base-stabilized boryl radical.20 Alternatively, in path B, 3 For selected references, see: a) T. Ishiyama, M. Murata, N. Miyaura, J.
the excited state 12 or the starting aryl iodide 1 (when in dark
although in low efficiency) might be reduced by TMDAM via a
single electron transfer (SET) process to form radical anion 16 and
TMDAM-derived radical cation 17. 16 should then undergo C-I
bond cleavage to generate aryl radical 13 and iodine anion. Finally,
15 could be oxidized by the iodine atom from path A or TMDAM-
derived radical cation 17 from path B to form borate 18 as a
byproduct.
Org. Chem. 1995, 60, 7508; b) W. Zhu, D. Ma, Org. Lett. 2006, 8,
261; c) K. L. Billingsley, T. E. Barder, S. L. Buchwald, Angew. Chem.
Int. Ed. 2007, 46, 5359; d) C. M. So, C. P. Lau, F. Y. Kwong, Angew.
Chem. Int. Ed. 2008, 47, 8059; e) C. Kleeberg, L. Dang, Z. Lin, T. B.
Marder, Angew. Chem. Int. Ed. 2009, 48, 5350; f) D. A. Wilson, C. J.
Wilson, C. Moldoveanu, A. M. Resmerita, P. Corcoran, L. M. Hoang,
B. M. Rosen, V. Percec, J. Am. Chem. Soc. 2010, 132, 1800; g) Y.
Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am.
Chem. Soc. 2013, 135, 18730; h) C. Zarate, R. Manzano, R. Martin, J.
Am. Chem. Soc. 2015, 137, 6754; i) S. K. Bose, T. B. Marder, Org.
Lett. 2014, 16, 4562; j) W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M.
So, C. P. Lau, W. T. Wong, F. Y. Kwong, RSC Adv, 2013, 3, 12518; k)
T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, J. Am. Chem. Soc. 2015,
137, 14313; l) S. K. Bose, A. Deiβenberger, A. Eichhorn, P. G. Steel,
Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2015, 54, 11843.
4
For selected references of catalytic C-H borylation, see: a) I. A. I.
Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig,
Chem. Rev. 2010, 110, 890; b) C. N. Iverson, M. R. Smith, III J. Am.
Chem. Soc. 1999, 121, 7696; c) H. Chen, S. Schlecht, T. C. Semple, J.
F. Hartwig, Science 2000, 287, 1995; d) T. Ishiyama, J. Takagi, K.
Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig, J. Am. Chem. Soc.
2002, 124, 390; e) S. Kawamorita, H. Ohmiya, K. Hara, A. Fukuoka,
M. Sawamura, J. Am. Chem. Soc. 2009, 131, 5058; f) H. X. Dai, J. Q.
Yu, J. Am. Chem. Soc. 2012, 134, 134; g) T. J. Mazzacano, N. P.
Mankad, J. Am. Chem. Soc. 2013, 135, 17258; h) L. Xu, S. Ding, P.
Li, Angew. Chem. Int. Ed. 2014, 53, 1822; i) J. V. Obligacion, S. P.
Semproni, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 4133; j) L.-S.
Zhang, G. Chen, X. Wang, Q.-Y. Guo, X.-S. Zhang, F. Pan, K. Chen,
Z.-J. Shi, Angew. Chem. Int. Ed. 2014, 53, 3899; k) G. Wang, L. Xu,
P. Li, J. Am. Chem. Soc. 2015, 137, 8058; l) S. Shimada, A. S.
Batsanov, J. A. K. Howard, T. B. Marder, Angew. Chem. Int. Ed.
2001, 40, 2168; m) H. Tajuddin, P. Harrisson, B. Bitterlich, J. C.
Collings, N. Sim, A. S. Batsanov, M. S. Cheung, S. Kawamorita, A. C.
Maxwell, L. Shukla, J. Morris, Z. Lin, T. B. Marder, P. G. Steel,
Chem. Sci. 2012, 3, 3505.
Scheme 2 Proposed reaction mechanism
Conclusions
In summary, we have discovered a novel and efficient photolytic
borylation reaction of aryl halides using diboron reagents. This
metal-free reaction features very mild conditions, short reaction
times, generally high yields and broad functional group tolerance.
Considering the reaction conditions, borylating reagent types and
possible reaction mechanism, this work represents an important
complementary approach to the existing C-B bond formation
methods. Further studies on the mechanism and synthetic
applications of this reaction are ongoing.
Acknowledgements
This work was financially supported by the NSFC (No. 21472146),
the Department of Science and Technology of Shaanxi Province (No.
2015KJXX-02) and the Ministry of Science and Technology (No.
2014CB548200). We thank Prof. Que (Xi’an Jiaotong University)
and Dr. Duncan Guthrie (Vapourtec) for their generous sharing of
the batch and flow photochemistry equipment.
5 a) E. Yamamoto, K. Izumi, Y. Horita, H. Ito, J. Am. Chem. Soc. 2012,
134, 19997; b) R. Uematsu, E. Yamamoto, S. Maeda, H. Ito, T.
Taketsugu, J. Am. Chem. Soc. 2015, 137, 4090; c) E. Yamamoto, S.
Ukigai, H. Ito, Chem. Sci. 2015, 6, 2943.
6 J. Zhang, H.-H. Wu, J. Zhang, Eur. J. Org. Chem. 2013, 6263.
7 N. Miralles, R. M. Romero, E. Fernándes, K. Muñiz, Chem. Commun.
2015, 51, 14068.
Notes and references
8 a) F. Mo, Y. Jiang, D. Qiu, Y. Zhang, J. Wang, Angew. Chem. Int. Ed.
2010, 49, 1846; b) W. Erb, A. Hellal, M. Albini, J. Rouden, J.
Blanchet, Chem. Eur. J. 2014, 20, 6608; c) D. Qiu, L. Jin, Z. Zheng,
H. Meng, F. Mo, X. Wang, Y. Zhang, J. Wang, J. Org. Chem. 2013,
78, 1923. d) J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal. 2012, 354,
2625; e) R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B.
Marder, Chem. Commun. 2015, 51, 9594; f) S. Pietch, E. C. Neeve, D.
C. Apperley, R. Bertermann, F. Mo, D. Qiu, M. S. Cheung, L. Dang, J.
Wang, U. Radius, Z. Lin, C. Kleeberg, T. B. Marder, Chem.Eur. J.
2015, 21, 7082; g) C. Zhu, M. Yamane, Org. Lett. 2012, 14, 4560.
1 For reviews of arylboronic acid derivatives, see: a) N. Miyaura, A.
Suzuki, Chem. Rev. 1995, 95, 2457; b) D. G. Hall in Boronic Acids:
Preparation and Applications in Organic Synthesis, Medicine and
Materials (Ed.: D. G. Hall) Wiley-VCH, Weinheim, 2011, pp. 1-134. c)
J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int. Ed.,
2012, 51, 8960; d) L. Xu, S. Zhang, P. Li, Chem. Soc. Rev. 2015, 44,
doi: 10.1039/c5cs00338e.
2 a) H. C. Brown, T. E. Cole, Organometallics 1983, 2, 1316; b) H. C.
Brown, M. Srebnik, T. E. Cole, Organometallics 1986, 5, 2300; c) O.
Baron, P. Knochel, Angew. Chem. Int. Ed. 2005, 44, 3133; d) C.
4 | Chem. Sci., 2015, 00, 1-5
This journal is © The Royal Society of Chemistry 2015