7
96
Y.-C. Liu et al.
LETTER
Presumably, once spiroketal formation had taken place,
ring opening and ring closure occurred leading to forma-
tion of the thermodynamically favoured spiroketal in
which the methyl group is equatorial and the C–O bond of
the five-membered ring is axial with respect to the six-
membered ring thus gaining maximum stability from the
anomeric effect. Thus, the formation of two racemic dia-
stereomers for each of spiroketals 7 and 9 can be rationa-
lised by the fact that the anomeric effect was weaker in
five-membered ring systems (for spiroketals 7 and 9) than
in six-membered ring systems (for spiroketals 6 and 8).22
(14) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am. Chem.
Soc. 2005, 127, 17778.
(
(
(
15) Larock, R. C.; Berrios-Peña, N. G.; Fried, C. A.; Yum, E. K.;
Tu, C.; Leong, W. J. Org. Chem. 1993, 58, 4509.
16) Westwell, A. D.; Williams, J. M. J. Tetrahedron 1997, 53,
13063.
17) Cleary, P. A.; Woerpel, K. A. Org. Lett. 2005, 7, 5531.
2
2
(18) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am.
Chem. Soc. 2006, 128, 11693.
(
19) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H.
J. Am. Chem. Soc. 2003, 125, 11360.
(
(
20) Normant, A. Bull. Soc. Chim. Fr. 1940, 7, 37.
21) General Procedure – Oxidative Radical Cyclisation
In conclusion, the synthesis of substituted monobenzan-
nulated spiroketals 5–9 was achieved using two key reac-
tions, namely cross metathesis between two olefin
coupling partners using Grubbs second-generation cata-
lyst and intramolecular oxidative radical cyclisation of a
tethered alcohol. Studies toward the synthesis of the
rubromycins 1–3, berkelic acid (4) and analogues using
this methodology are ongoing.
A mixture of alcohol (0.052 mmol), PhI(OAc) (0.106
2
mmol), and I (0.118 mmol) in anhyd cyclohexane (4.3 mL)
2
was degassed with argon at r.t. for 15 min. The resulting
solution was cooled in an ice–water bath (7 °C) and
irradiated with a desk lamp (60 W) for 2–3 h after which it
was diluted with Et O (10 mL), then sat. Na S O (10 mL)
2
2
2
3
and sat. NaHCO (10 mL) were added. After separation of
3
both phases, the aqueous phase was extracted with Et O
2
(4 × 15 mL). The organic phases were combined, dried over
anhyd MgSO , filtered, and the solvents concentrated in
4
vacuo. The crude product was purified by column
Acknowledgment
chromatography on SiO (100% n-pentane, then n-pentane–
2
Et O, 12:1) to give the spiroketal product.
2
We thank the Tertiary Education Committee, New Zealand for the
award of a Bright Futures Top Achiever Doctoral Scholarship
(
±)-4¢-Methyl-3¢,4¢5¢,6¢tetrahydro-3H-spiro(benzofuran-
,2¢-pyran) (6)
Pale yellow oil (7 mg, 0.034 mmol, 42%); R = 0.31
2
(
Y.-C. Liu).
f
(
hexanes–Et O, 10:1). IR (film): 2946, 2925, 2869, 1597,
2
1
479, 1461, 1377, 1238, 1216, 1121, 1096, 1084, 1034, 869,
References and Notes
–
1 1
8
26, 810, 791, 776, 747, 706 cm . H NMR (300 MHz,
): d = 0.98 (d, J = 6.6 Hz, 3 H, C-4¢-CH ), 1.33 (qd,
(
(
1) Paterson, I.; Anderson, E. A. Science 2005, 310, 451.
2) Vaillancourt, V.; Pratt, N. E.; Perron, F.; Albizati, K. F. The
Total Synthesis of Spiroketal-Containing Natural Products,
In Total Synthesis of Natural Products, Vol. 8; ApSimon, J.,
Ed.; John Wiley and Sons, 2007.
CDCl
3
3
J = 12.8, 4.9 Hz, 1 H, Hax-5¢), 1.47 (dd, J = 13.1, 12.5 Hz, 1
H, Hax-3¢), 1.64 (dtd, J = 13.2, 3.8, 1.9 Hz, 1 H, Heq-5¢), 2.03
(ddd, J = 13.4, 3.8, 1.8 Hz, 1 H, Heq-3¢), 2.08–2.24 (m, 1 H,
H
1 H, H
ax-4¢), 3.05 (d, J = 16.3 Hz, 1 H, H
-3), 3.12 (d, J = 16.3 Hz,
-3), 3.74 (ddd, J = 11.4, 4.9, 1.5 Hz, 1 H, Heq-6¢), 4.06
b
a
(
(
3) Brasholz, M.; Sörgel, S.; Azap, C.; Reißig, H.-U. Eur. J.
Org. Chem. 2007, 3801.
4) Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.;
Yokoyama, A.; Goto, Y.; Mizushina, Y.; Sakaguchi, K.;
Hayashi, H. Biochemistry 2000, 39, 5995.
(ddd, J = 11.3, 13.0, 2.4 Hz, 1 H, Hax-6¢), 6.80 (d, J = 7.9 Hz,
1 H, H-7), 6.85 (td, J = 7.4, 0.9 Hz, 1 H, H-5), 7.10–7.17 (m,
2 H, H-4 and H-6). C NMR (75 MHz, CDCl
(CH
(CH
7), 109.8 (C, C-2), 120.6 (CH, C-5), 124.9 (CH, C-4), 126.0
(C, C-3a), 127.9 (CH, C-6), 158.2 (C, C-7a). MS (EI, 70 eV):
m/z (%) = 41 (30), 51 (12), 55 (15), 69 (16), 78 (41), 91 (12),
97 (70), 107 (29), 115 (4), 121 (4.5), 131 (21), 134 (10), 145
(3), 159 (2.5), 171 (1.5), 189 (59.5), 203 (5), 204 (100) [M] .
HRMS (EI): m/z [M] calcd for C13
1
3
): d = 22.1
, C-5¢), 42.5
, C-6¢), 109.7 (CH, C-
2
3
, C-4¢-CH
), 26.2 (CH, C-4¢), 33.3 (CH
, C-3¢) 42.8 (CH , C-3), 62.6 (CH
3
3
2
(
5) Stierle, A. A.; Stierle, D. B.; Kelly, K. J. Org. Chem. 2006,
2
2
7
1, 5357.
6) (a) Tsang, K. Y.; Brimble, M. A.; Bremner, J. B. Org. Lett.
003, 5, 4425. (b) Tsang, K. Y.; Brimble, M. A.
(
2
Tetrahedron 2007, 63, 6015.
7) Brimble, M. A.; Flowers, C. L.; Trzoss, M.; Tsang, K. Y.
Tetrahedron 2006, 62, 5883.
+
(
(
(
+
H
16
O
2
: 204.1150; found:
8) Brimble, M. A.; Liu, Y.-C.; Trzoss, M. Synthesis 2007,
204.1146.
1392.
(±)-4¢-Methyl-4¢,5¢-dihydro-3H,3¢H-spiro(benzofuran-
9) van Hooft, P. A. V.; van Swieten, P. F.; van der Marel,
2,2¢-furan) (7a,b)
G. A.; van Boeckel, C. A. A.; van Boom, J. H. Synlett 2001,
Pale yellow oil (8 mg, 0.042 mmol, 73%); 7a/7b = 1.4:1,
mixture of inseparable major (7a) and minor* (7b)
269.
(
(
10) Zhang, Y.; Xue, J.; Xin, Z.; Xie, Z.; Li, Y. Synlett 2008, 940.
11) Main, C. A.; Rahman, S. S.; Hartley, R. C. Tetrahedron Lett.
diastereomers; R
2954, 2924, 2855, 1598, 1479, 1462, 1377, 1241, 1120,
f
= 0.33 (hexanes–EtOAc, 9:1). IR (film):
–
1 1
2
008, 49, 4771.
12) (a) Huang, Y.; Pettus, T. R. R. Synlett 2008, 1353.
b) Marsini, M. A.; Huang, Y.; Lindsey, C. C.; Wu, K.-L.;
1082, 1010, 830, 779, 747, 706 cm . H NMR (400 MHz,
CDCl ): d = 1.13 (d, J = 6.8 Hz, 3 H, C-4¢-CH ), 1.20 (d,
J = 6.6 Hz, 2.1 H, C-4¢-CH *), 1.73 (dd, J = 12.9, 10.1 Hz, 1
H, H -3¢), 2.12 (dd, J = 13.6, 6.0 Hz, 0.7 H, H -3¢*), 2.38
(dd, J = 13.4, 9.4 Hz, 0.7 H, H -3¢*), 2.45–2.54 (m, 0.7 H,
H-4¢*), 2.51 (dd, J = 12.9, 7.0 Hz, 1 H, H -3¢), 2.69–2.82 (m,
1 H, H-4¢), 3.23–3.32 (m, 3.4 H, H-3 and H-3*), 3.56 (t,
J = 8.0 Hz, 1 H, H -5¢), 3.68 (t, J = 8.2 Hz, 0.7 H, H -5¢*),
4.13 (t, J = 7.9 Hz, 0.7 H, H -5¢*), 4.25 (t, J = 8.0 Hz, 1 H,
-5¢), 6.76 (d, J = 8.4 Hz, 1 H, H-7), 6.79 (d, J = 8.9 Hz, 0.7
H, H-7*), 6.85 (t, J = 7.4 Hz, 1.7 H, H-5 and H-5*), 7.11 (t,
(
3
3
(
3
Pettus, T. R. R. Org. Lett. 2008, 10, 1477. (c) Bray, C. D.
Org. Biomol. Chem. 2008, 6, 2815. (d) Bray, C. D. Synlett
2
B
A
B
008, 2500.
13) (a) Martín, A.; Salazar, J. A.; Suárez, E. J. Org. Chem. 1996,
1, 3999. (b) Brimble, M. A.; Horner, G. M.; Stevenson,
A
(
6
B
A
R. J. Aust. J. Chem. 1996, 49, 189. (c) Brimble, M. A.
Molecules 2004, 9, 394. (d) Meilert, K.; Brimble, M. A.
Org. Biomol. Chem. 2006, 4, 2184.
B
H
A
Synlett 2009, No. 5, 793–797 © Thieme Stuttgart · New York