DECOMPOSITION OF PENTAFLUOROALLYL FLUOROSULFATE OXIDE
455
0.5 (bp –59°С), CF3CF2COF 1 (bp –23°С), HFP 5,
MDF 22 (bp –9°С), FOCCF2OSO2F 0.5, AFSO 1, and
unidentified impurities 2.5. The MDF yield and spectra
of the identified compounds are given in Tables 1 and
2. The bottoms were also analyzed by GLC. The
bottoms (2.5 g) after filtering off the salts and distilling
off acetonitrile were a dark red mixture of high-boiling
AFSO oligomers.
5. Ovchinnikov, E.V., Struk, V.A., and Gubanov, V.A.,
Tonkie plenki ftorsoderzhashchikh oligomerov: Osnovy
sinteza, svoistva, primenenie (Thin Films of Fluorinated
Oligomers: Fundamentals of the Synthesis, Properties,
Application), Grodno: GGAU, 2007.
6. Zapevalov, A.Ya., Development of Synthesis Proce-
dures and Study of Reactions of Higher Polyfluoroolefin
Oxides, Doctoral Dissertation, Ufa, 1991.
7. Saloutina, L.V., Kodi, M.I., and Zapevalov, A.Ya., Izv.
Ross. Akad. Nauk, Ser. Khim., 1994, no. 12, p. 2177.
8. Fokin, A.V., Studnev, Yu.N., Kuznetsova, L.D., and
CONCLUSIONS
Krotovich, I.N., Usp. Khim., 1982, vol. 51, no. 8, p. 1258.
(1) Decomposition of pentafluoroallyl fluorosulfate
oxide under the action of nucleophilic catalysts yields
a multicomponent mixture of products, which suggests
the reaction occurrence along several concurrent
pathways.
9. Kadyrov, A.A. and Rokhlin, E.M., Abstracts of Papers,
IV Vsesoyuznaya konferentsiya po khimii ftororgani-
cheskikh soedinenii (IV All-Union Conf. on Chemistry
of Organofluoric Compounds), Tashkent, 1982, p. 210.
10. Banks, R.E., Birchall, J.M., Haszeldine, R.N., and
Nicholson, W.J., J. Fluorine Chem., 1982, vol. 20, no. 1,
p. 133.
11. Barabanov, V.G. and Ozol, S.I., Piroliticheskie sposoby
polucheniya ftorsoderzhashchikh olefinov (Pyrolytic
Procedures for Preparing Fluorinated Olefins), St.
Petersburg: Teza, 2000.
(2) Difluoromalonyl difluoride is formed in the
maximal yield (up to 60 mol %) in acetonitrile in the
presence of catalytic amounts of KF and ethylene
glycol, or of the complex Et3N·3HF.
(3) A scheme of formation of the identified by-
products of pentafluoroallyl fluorosulfate oxide
decomposition by the carbene mechanism was
suggested.
12. Mizukado, J., Matsukawa, Y., Quan, H., et al., J. Fluorine
Chem., 2005, vol. 126, no. 3, p. 365.
13. Hass, D., Holfter, H., Schonher, M., and Zahvo, E., J. Fluorine
Chem., 1992, vol. 59, no. 2, p. 293.
(4) In the course of decomposition of penta-
fluoroallyl fluorosulfate oxide in the steady-state
supply mode on potassium fluoride, the composition of
the reaction products changes toward an increase in the
yield of carbene decomposition products (hexafluoro-
propene and carbonyl difluoride), owing to specific
catalysis on the surface of the forming potassium
fluorosulfate.
14. Sargeant, P.B., J. Org. Chem., 1970, vol. 35, p. 678.
15. Sovremennye metody organicheskogo sinteza (Modern
Methods of Organic Synthesis), Ioffe, B.V., Ed., Lenin-
grad: Leningr. Gos. Univ., 1980.
16. Moreland, C.G. and Brey, W.S., J. Chem. Phys., 1964,
vol. 40, p. 2349.
17. Jin, A., Mack, H.G., Waterfeld, A., and Oberhammer, H.,
(5) Decomposition of pentafluoroallyl fluorosulfate
oxide by the carbene mechanism is strongly influenced
by the heterogeneous catalytic effect of the metal
surface.
J. Am. Chem. Soc., 1991, vol. 113, p. 7847.
18. Gerhardt, G.E. and Lagow, R.J., J. Chem. Soc., Perkin
Trans. 1, 1981, p. 1321.
19. Redwood, M.E. and Willis, C.J., Can. J. Chem., 1967,
vol. 45, p. 389.
REFERENCES
20. Burger, H. and Pawelke, G., J. Chem. Soc., Chem.
Commun., 1988, p. 105.
1. JPN Patent 1149749.
2. Krespan, C.G. and England, D.C., J. Am. Chem. Soc.,
21. Banks, R.E., Bruling, E.D., Dodd, B.A., and Mullen, K.,
1981, vol. 103, p. 5598.
J. Chem. Soc. C, 1969, p. 1706.
3. RF Patent Appl. 2006140565/04.
4. JPN Patent 1163173.
22. Sartori, P. and Habel, W., J. Fluorine Chem., 1980,
vol. 16, p. 265.
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 82 No. 3 2009