JOURNAL OF
POLYMER SCIENCE
WWW.POLYMERCHEMISTRY.ORG
ARTICLE
13 S. Miyanishi, K. Tajima, K. Hashimoto, Macromolecules
2009, 42, 1610–1618.
aggregations at elevated temperate for a long time was sup-
pressed by the photocrosslinking of the polymer, which led
to a more stable device performance in the case of PBDTTT-
Br when compared with that of PBDTTT. This approach
might be useful for the development of stable PSCs. The
insolubility of the photocrosslinkable PBDTTT-Br is also con-
sidered to be useful for the fabrication of multilayers by sub-
sequent solution processes, which can enable the fabrication
of efficient multilayer or tandem PSCs.
14 K. Sivula, Z. T. Ball, N. Watanabe, J. M. J. Frechet, Adv.
Mater. 2006, 18, 206–210.
15 S. Miyanishi, Y. Zhang, K. Tajima, K. Hashimoto, Chem.
Commun. 2010, 46, 6723–6725.
16 M. Drees, H. Hoppe, C. Winder, H. Neugebauer, N. S. Sari-
ciftci, W. Schwinger, F. Schaffler, C. Topf, M. C. Scharber, Z. G.
Zhu, R. Gaudiana, J. Mater. Chem. 2005, 15, 5158–5163.
17 A. E. A. Contoret, S. R. Farrar, M. O’Neill, J. E. Nicholls, G. J.
Richards, S. M. Kelly, A. W. Hall, Chem. Mater. 2002, 14, 1477–1487.
18 (a) C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wie-
derhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meer-
holz, Nature 2003, 421, 829–833; (b) A. Charas, Q. Ferreira, J.
Farinhas, M. Matos, L. Alcacer, J. Morgado, Macromolecules
2009, 42, 7903–7912.
ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China (nos. 21004019, 51173040, 91023039, and
21021091), the Ministry of Science and Technology of China
(863 project, no. 2011AA050523), and the Chinese Academy of
Sciences. Z. Tan thanks the financial support from the Beijing
NOVA Program (no. 2010B038), Program for New Century
Excellent Talents in University (NCET-12-0848), SRFDP (no.
20100036120007), and Fundamental Research Funds for the
Central Universities, China (11QG18).
19 (a) B. J. Kim, Y. Miyamoto, B. Ma, J. M. J. Frechet, Adv.
Funct. Mater. 2009, 19, 2273–2281; (b) G. Griffini, J. D. Douglas,
C. Piliego, T. W. Holcombe, S. Turri, J. M. J. Frechet, J. L.
Mynar, Adv. Mater. 2011, 23, 1660–1664.
20 (a) B. Gholamkhass, S. Holdcroft, Chem. Mater. 2010, 22,
5371–5376; (b) H. J. Kim, A. R. Han, C. H. Cho, H. Kang, H. H.
Cho, M. Y. Lee, J. M. J. Frechet, J. H. Oh, B. J. Kim, Chem.
Mater. 2012, 24, 215–221; (c) C. Y. Nam, Y. Qin, Y. S. Park, H.
Hlaing, X. Lu, B. M. Ocko, C. T. Black, R. B. Grubbs, Macromo-
lecules 2012, 45, 2338–2347.
21 (a) C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc,
R. M. Liang, C. S. Hsu, J. Am. Chem. Soc. 2010, 132, 4887–
4893; (b) U. R. Lee, T. W. Lee, M. H. Hoang, N. S. Kang, J. W.
Yu, K. H. Kim, K. G. Lim, T. W. Lee, J. I. Jin, D. H. Choi, Org.
Electron. 2011, 12, 269–278.
REFERENCES AND NOTES
1 (a) J. W. Chen, Y. Cao, Acc. Chem. Res. 2009, 42, 1709–1718;
(b) Y.-J. Chen, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109,
5868–5923; (c) Y. F. Li, Acc. Chem. Res. 2012, 45, 723–733.
2 G. Yu, J. Hummelen, F. Wudl, A. J. Heeger, Science 1995,
270, 1789–1791.
22 D. R. Rutherford, J. K. Stille, C. M. Elliott, V. R. Reichert,
Macromolecules 1992, 25, 2294–2306.
3 J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia,
R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376,
498–500.
23 (a) H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W.
Yang, Y. Yang, L. P. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3,
649–653; (b) Z. A. Tan, W. Q. Zhang, Z. G. Zhang, D. P. Qian, Y.
Huang, J. H. Hou, Y. F. Li, Adv. Mater. 2012, 24, 1476–1481.
€
4 S. K. Pal, T. Kesti, M. Maiti, F. Zhang, O. Inganas, S.
€
€
Hellstrom, M. R. Andersson, F. Oswald, F. Langa, T. Osterman,
24 J. M. Chong, M. A. Heuft, P. Rabbat, J. Org. Chem. 2000, 65,
€
T. Pascher, A. Yartsev, V. Sundstrom, J. Am. Chem. Soc. 2010,
5837–5838.
132, 12440–12451.
25 Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, L. Yu,
J. Am. Chem. Soc. 2009, 131, 56–57.
5 G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery,
Y. Yang, Nat. Mater. 2005, 4, 864–868.
26 V. D. Mihailetchi, J. Wildeman, P. W. M. Blom, Phys. Rev.
Lett. 2005, 94, 126602.
6 M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etche-
goin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Brad-
ley, J. Nelson, Nat. Mater. 2008, 7, 158–164.
27 A. Facchetti, Chem. Mater. 2011, 23, 733–758.
28 Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, A. J. Heeger, Synth.
Met. 1999, 99, 243–248.
7 W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct.
Mater. 2005, 15, 1617–1622.
€
29 M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Wal-
dauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789–794.
8 G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv.
Funct. Mater. 2007, 17, 1636–1644.
30 G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009,
21, 1323–1338.
9 (a) Y. Yao, J. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater.
2008, 18, 1783–1789; (b) X. Guo, C. H. Cui, M. J. Zhang, L. J.
Huo, Y. Huang, J. H. Hou, Y. F. Li, Energy Environ. Sci. 2012, 5,
7943–7949.
31 R. C. Weast, Handbook of Chemistry and Physics, 65th ed.;
CRC Press: Boca Raton, 1984–1985.
32 I. R. Gearba, C.-Y. Nam, R. Pindak, C. T. Black, Appl. Phys.
Lett. 2009, 95, 173307.
10 S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Mart-
ens, L. Lutsen, D. Vanderzande, J. Manca, A. Senes, A. Bonfi-
glio, Sol. Energy Mater. Sol. Cells 2007, 91, 385–389.
33 B. A. Gregg, S. E. Gledhill, B. Scott, J. Appl. Phys. 2006, 99,
116104.
11 J. M. J. Frechet, B. C. Thompson, Angew. Chem. Int. Ed.
Engl. 2008, 47, 58–77.
€
34 K. Vandewal, K. Tvingsted, A. Gadisa, O. Inganas, J. V.
Manca, Phys. Rev. B 2010, 81, 125204.
12 S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007,
107, 1324–1338.
35 M. D. Perez, C. Borek, S. R. Forrest, M. E. Thompson, J. Am.
Chem. Soc. 2009, 131, 9281–9286.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2013, 51, 3123–3131
3131