for the preparation of new nicotinic receptor agonists9 and
antibiotics.10 Amino acid 2, a 3,5-methanoproline, is isomeric
with the naturally occurring 2,4-methanoproline 3.11
finding a new route to 3-substituted methanobridged proline
derivatives 6.15
We have recently described a simple four-step route from
pyridine to the 2-azabicyclo[2.1.1]hexane ring system.12 It
was envisioned that application of the protocol of Beak13a
to the N-BOC-2-azabicyclo[2.1.1]hexane 4 could be used to
generate a lithio anion 5 and that subsequent addition of
electrophiles (CO2, ClCOOMe, DMF) could be used to
generate structures 6a-d, desirable derivatives of 3,5-
methanoproline 2. However, would azabicycle 4 lose a
methylene proton to give anion 5, or would a bridgehead
proton be lost to afford the lithio anion 7, whose quenching
would provide isomeric structures 8?14
The established conformational principle for reactions that
provide R-lithioamine derivatives of amides is that “an
orthogonal relationship between the lithio carbanion and the
pi system of the amide. . . (is) faVorable.”15 In the case of
N-BOC-2-methyl-pyrrolidine 9, this means that lithiation
followed by methylation occurs only at the methylene
position to afford a stereochemical mixture of 2,5-dimethyl-
pyrrolidines 10.13a However, the system 9 has flexibility not
found in azabicycle 4. The objective of the present study
was to determine the regiochemical outcome of R-substitution
reactions of the rigid ring azabicycle 4 with the goal of
N-BOC-2-azabicyclo[2.1.1]hexane 4 was prepared accord-
ing to our previously described procedure from its N-(benzyl-
oxycarbonyl) analogue12 by hydrogenolysis of the benzyloxy
group in the presence of (BOC)2O.17 To generate the lithio
anions 5 and 7, the azabicycle 4 in ether, which had been
dried by passing through a Glass Contour alumina column,
was reacted with 1.1-1.6 equiv of sec-butyllithium (s-BuLi)/
TMEDA for 2 h at either -78 or 0 °C.13a The anions were
then quenched. The electrophilic reagent carbon dioxide was
bubbled in excess into the anion mixture over 5-15 min by
warming of dry ice and passing the gas sequentially through
dry calcium chloride and then concentrated sulfuric acid.18
Methyl chloroformate (5 equiv) was injected by syringe into
the preformed anion(s) 5/7. Formylations were carried out
by adding a mixture of the lithio anions 5/7 to dry precooled
DMF (5 equiv) in ether. Following addition of the electro-
phile, the reaction mixture was maintained at the target
temperature for 0.5 h and then allowed to warm to room
temperature. The carbon dioxide addition product was
acidified to give acid 8a, which could be converted to ester
8b using Me3SiCHN2.19a Aldehyde products either were
isolated as aldehydes 6c/8c, reduced with sodium borohy-
dride to form alcohols 6d/8d, or oxidized with sodium
(9) Elliot, R. L.; Kopecka, H.; Lin, N.-H.; He, Y.; Garvey, D. S. Synthesis
1995, 772.
(10) Park, T. H.; Ha, Y. H.; Jeong, D. Y. Patent Application WO 98-
KR246 19989898; Chem. Abstr. 1999, 130, 182388.
(11) (a) Bell, E. A.; Qureshi, M. Y.; Pryce, R. J.; Janzen, D. H.; Lemke,
P.; Clardy, J. J. Am. Chem. Soc. 1980, 109, 1409. (b) Talluri, S.; Montelione,
B. T.; van Duyne, G.; Piela, L.; Clardy, J.; Scheraga, H. A. J. Am. Chem.
Soc. 1987, 109, 4473. (c) Piela, L.; Nemethy, G.; Scheraga, H. A. J. Am.
Chem. Soc. 1987, 109, 4477. (d) Montelione, G. T.; Hughes, P.; Clardy, J.;
Scheraga, H. A. J. Am. Chem. Soc. 1986, 108, 6765.
(12) Krow, G. R.; Lee, Y. B.; Lester, W. S.; Christian, H.; Shaw, D. A.;
Yuan, J. J. Org. Chem. 1998, 63, 8558.
(13) (a) Beak, P.; Lee, W. K. J. Org. Chem. 1993, 58, 1109. For reviews,
see: (b) Beak, P.; Meyers, A. I. Acc. Chem. Res. 1986, 19, 356. (c) Beak,
P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem.
Res. 1996, 29, 552. (d) Gawley, R. E.; Rein, K. ComprehensiVe Organic
Synthesis, Pergamon Press: New York, 1991; Vol. 1, pp 459-485.
(14) (a) Monn, J. A.; Rice, K. D. Tetrahedron Lett. 1989, 30, 911.
Regioselective R-lithiation of a tert-butylformamide at a dibenzylic
bridgehead position in preference to a monobenzylic position has been
reported. For other examples of related regioselective lithiation-substitution
reactions, see: (b) Kopach, M. E.; Meyers, A. I. J. Org. Chem. 1996, 61,
6764. (c) Meyers, A. I.; Milot, G. J. Org. Chem. 1993, 58, 6538. (d)
Coldham, I.; Copley, R. C. B.; Haxell, T. F. N.; Howard, S. Org. Lett.
2001, 3, 3799. (e) Coldham, I.; Judkins, R. A.; Witty, D. R. Tetrahedron
1998, 54, 14255. (f) Park, Y. S.; Beak, P. Tetrahedron 1996, 52, 12333.
(15) (a) Gross, K. M. B.; Beak, P. J. Am. Chem. Soc. 2001, 123, 315.
and refs 3-9 therein. For calculated energies and favored geometries of
R-lithioamides, see: (b) Wiberg, K. B.; Bailey, W. F. J. Org. Chem. 2002,
67, 5365. (c) Bailey, W. F.; Beak, P.; Kerrick, S. T.; Ma, S.; Wiberg, K. B.
J. Am. Chem. Soc. 2002, 124, 1889. (d) Wiberg, K. B.; Bailey, W. F. J.
Am. Chem. Soc. 2001, 123, 8231. (e) Wiberg, K. B.; Bailey, W. F.
Tetrahedron Lett. 2000, 41, 9365. (f) Bartolotti, L. J.; Gawley, R. E. J.
Org. Chem. 1989, 54, 2980. (g) Bach, R. D.; Braden, M. L.; Wolber, G. J.
J. Org. Chem. 1983, 48, 1509. (h) Rondan, N. G.; Houk, K. N.; Beak, P.;
Zajdel, W. J.; Chandrasekhar, J.; Schleyer, P. v. R. J. Org. Chem. 1981,
46, 4108.
(16) For an alternative route to 3-substituted 2-azabicyclo[2.1.1]hexanes,
see: (a) Krow, G. R.; Yuan, J.; Lin, G.; Sonnet, P. E. Org. Lett. 2002, 4,
1259. (b) Krow, G. R.; Lester, W. S.; Liu, N.; Yuan, J.; Hiller, A.; Duo, J.;
Herzon, S. B.; Nguyen, Y.; Cannon, K. J. Org. Chem. 2001, 66, 1811. (c)
Krow, G. R.; Lee, Y. B.; Lester, W. S.; Liu, N.; Yuan, J.; Duo, J.; Herzon,
S. B.; Nguyen, Y.; Zacharias, D. J. Org. Chem. 2001, 66, 1805.
(17) Saito, S.; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron Lett.
1989, 30, 837.
(18) Mander, L. N. Carbon Dioxide. In Encyclopedia of Reagents for
Organic Synthesis: Paquette, L. A., Ed.; Wiley & Sons: New York, 1995;
pp 985-988.
(19) (a) Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm. Bull. 1981,
5, 1475. (b) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem.
1987, 52, 2559.
3152
Org. Lett., Vol. 4, No. 18, 2002