Journal of the American Chemical Society
Article
(6) Bogenstatter, M.; Limberg, A.; Overmann, L. E.; Tomasi, A. L. J.
Am. Chem. Soc. 1999, 121, 12206−12207.
coordinated carbonyl (formyl in 16 and methoxy carbonyl in
17) to destabilize heterolysis of an oxirane α-C−O bond.
The systematic studies that are described above have revealed
three approaches which are highly effective for cationic
cyclization process based on Katsuki−Sharpless-derived epox-
ides. First, the use of methoximes of aldehyde such as 16 leads
to efficient cyclization reactions by way of a nonchelated
complex of Lewis acid with the epoxide oxygen. These
reactions (see Table 1) are clearly accelerated by the
electron-donating properties of the methoxime group which
favor Lewis-acid-induced oxiranyl C−O cleavage. A second, and
related, method involves activation of the oxirane C−O group
by attachment of vinyl substituent, such as in substrate 32, or
those listed in Table 2. Lastly, covalent attachment of a strong
Lewis acid directly to oxygen of an α-hydroxymethyl oxirane
can induce cyclization through an intramolecular mode of
action. In this case, however, oxirane activation is unusually
weak and only observed with quite strong Lewis acidic metals.
Our work has led to the identification of two factors which
may play critical role in the Lewis-acid-induced cyclization of α-
functionalized epoxides, one an inductive effect which results
from chelation and the other a kind of stereoelectronic/
electrostatic effect.
(7) Tanis, S. P.; Chaung, Y. H.; Head, D. B. J. Org. Chem. 1988, 53,
4929−4938.
(8) Corey, E. J.; Lee, J.; Liu, D. R. Tetrahedron Lett. 1994, 35, 9149−
9152.
(9) Corey, E. J.; Lee, J. J. Am. Chem. Soc. 1993, 115, 8873−8874.
(10) Haung, A. X.; Xiong, Z.; Corey, E. J. J. Am. Chem. Soc. 1999,
121, 9999−10003.
(11) Mi, Y.; Schreiber, J. V.; Corey, E. J. J. Am. Chem. Soc. 2002, 124,
11290−11291.
(12) Zhang, J.; Corey, E. J. Org. Lett. 2001, 3, 3215−3216.
(13) (a) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2008, 130,
8865−8869. (b) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2009, 131,
13928−13929.
(14) Barrett, T. N.; Barrett, A. G. M. J. Am. Chem. Soc. 2014, 136,
17013−17015.
(15) Cherney, E. C.; Green, J. C.; Baran, P. S. Angew. Chem., Int. Ed.
2013, 52, 9019−9022.
(16) Behenna, D. C.; Corey, E. J. J. Am. Chem. Soc. 2008, 130, 6720−
6721.
(17) Kurti, L.; Chein, R. J.; Corey, E. J. J. Am. Chem. Soc. 2008, 130,
9031−9036.
(18) Corey, E. J.; Staas, D. D. J. Am. Chem. Soc. 1998, 120, 3526−
3527.
(19) (a) Corey, E. J.; Zhang, J. Org. Lett. 2011, 3, 3211−3214.
(b) Corey, E. J.; Noe, M. C.; Lin, S. Tetrahedron Lett. 1995, 36, 8741−
8744. (c) Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 319−
329.
The knowledge gained from the work described herein can
guide additional research on the application of epoxide induced
cationic cyclization reactions to synthesis, which remains a
major challenge.
(20) (a) Tanis, S. P.; Chuang, Y. H.; Head, D. B. Tetrahedron Lett.
1985, 26, 6147−6150. (b) Clark, J. S.; Myatt, J.; Wilson, C.; Roberts,
L.; Walsh, N. Chem. Comm 2003, 1546−1547. (c) Rosen, B. R.;
ASSOCIATED CONTENT
■
̀
Werner, E. W.; OBrien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136,
S
* Supporting Information
5571−5574.
Experimental procedures and characterization data for all
reactions and products including copies of H and 13C NMR
1
(21) Corey, E. J.; Liu, K. J. Am. Chem. Soc. 1997, 119, 9929−9930.
(22) (a) Caron, M.; Carlier, P. R.; Sharpless, K. B. J. Org. Chem.
1988, 53, 5185−5187. (b) Chong, J. M.; Sharpless, K. B. Tetrahedron.
Lett. 1985, 26, 4683−4686. (c) Chong, J. M.; Sharpless, K. B. J. Org.
Chem. 1985, 50, 1560−1563. (d) Saito, S.; Takahashi, N.; Ishikava, T.;
Moriwake, T. Tetrahedron. Lett. 1991, 32, 667−670.
spectra. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
■
(23) (a) Roush, W. R.; Adam, M. A.; Peseckis, S. M. Tetrahedron.
Lett. 1983, 24, 1377−1380. (b) Finan, J. M.; Kishi, Y. Tetrahedron. Lett.
1982, 23, 2719−2722.
(24) (a) Fraile, J. M.; Mayoral, J. A.; Salvatella, L. J. Org. Chem. 2014,
79, 5993−5999. (b) Seanz, P.; Cachau, R. E.; Seoane, G.; Kieninger,
M.; Ventura, O. N. J. Phys. Chem. A 2006, 110, 11734−11751.
(25) (a) Corey, E. J. Experientia 1953, 9, 329−336. (b) Corey, E. J.;
Sneen, R. A. J. Am. Chem. Soc. 1956, 78, 6269−6278.
(26) Kirby, A. J. Stereoelectronic effect; Oxford University Press: New
York, 1996.
(27) (a) Blackemore, P. R.; Cole, W. J.; Kociensky, J. P.; Morley, A.
Synlett 1998, 26−28. (b) DiBlasi, C. M.; Macks, D. E.; Tan, D. S. Org.
Lett. 2005, 7, 1777−1780.
(28) To a stirred solution of tetrazole sulfone (0.494 g, 1.86 mmol)
and tetrahexylammonium bromide (0.905 g, 2.32 mmol) in
dimethoxyethane (15 mL) was added a solution of aldehyde 16 (0.3
g, 1.16 mmol) in dimethoxyethane (5 mL). The reaction mixture was
cooled to −78 °C, and treated with KHMDS (4.2 mL, 0.5 M)
dropwise over 4 h using a syringe pump. After the addition was
completed, the reaction mixture was stirred at −78 °C for 30 min and
then warmed to 23 °C and stirred for 2 h. The reaction was followed
by TLC analysis (triethylamine treated TLC plate). The resulting
mixture was treated with water (5 mL) and then ether (10 mL). The
organic layer was separated, and the aqueous layer was extracted with
ether (2 × 10 mL). The combined organic extract was washed with
water and brine, dried over Na2SO4, and concentrated under vacuum.
The crude product was purified by column chromatography
(triethylamine treated silica gel, 0.5% ethyl acetate in hexane basified
with a drop of triethylamine) to give the epoxy olefin 50 (0.304 g,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. S.-L. Zeng of Harvard University for the X-ray
crystallographic analysis. Financial support of Pfizer Inc.,
Bristol-Myers Squibb and Gilead Sciences is gratefully acknowl-
edged.
REFERENCES
■
(1) (a) Corey, E. J.; Russey, W. E.; Ortiz de Montellano, P. R. J. Am.
Chem. Soc. 1966, 88, 4750−4751. (b) Corey, E. J.; Russey, W. E. J. Am.
Chem. Soc. 1966, 88, 4751−4752. (c) Russey, W. E. Ph.D. Thesis,
Harvard University, 1966.
(2) For a broad review, see Schulz, G. E.; Corey, E. J.; Liu, D. R.
Angew. Chem., Int. Ed. 2000, 39, 2812−2833.
(3) See Maudgal, R. K.; Tchen, T. T.; Bloch, K. J. Am. Chem. Soc.
1958, 80, 2589−2590.
(4) For reviews, see (a) Yoder, R. A.; Johnston, J. N. Chem. Rev.
2005, 105, 4730−4756. (b) Corey, E. J.; Kurti, L. Enantioselective
Chemical Synthesis; Elsevier Publishers: Amsterdam, 2010; pp 281−
307. (c) Pronin, S. V.; Shenvi, R. A. Nat. Chem. 2012, 4, 915−920.
(d) Taylor, S. K. Org. Prep. Proced. Int. 1992, 24, 245−284.
(5) Aggarwal, V. K.; Bethel, P. A.; Giles, R. Chem. Commun. 1999,
325−326.
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX