P. Singh et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4561–4563
4563
4. (a) Vennerstrom, J. L.; Arbe-Barnes, S.; Brun, R.; Charman, S. A.; Chiu, C. K.;
Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.;
Padmanilayam, M.; Tomas, J. S.; Scheurer, C.; Scorneaux, B.; Tang, Y.;
Urwyler, H.; Wittlin, S.; Charman, W. N. Nature 2004, 430, 900; (b) Haynes, R.
K.; Fugmann, B.; Stetter, J.; Rieckmann, K.; Heilmann, H.; Chan, H.; Cheung, M.;
Lam, W.; Wong, H.; Croft, S.; Vivas, L.; Rattray, L.; Stewart, L.; Peters, W.;
Robinson, B.; Edstein, M.; Kotecka, B.; Kyle, D. E.; Beckermann, B.; Gerisch, M.;
Radtke, M.; Schmuck, G.; Steinke, W.; Wollborn, U.; Schmeer, K.; Romer, A.
Angew. Chem., Int. Ed. 2006, 45, 2082.
5. Bose, A. K.; Manhas, M. S.; Banik, B. K.; Sriranjan, V. b-Lactams: Cyclic Amides of
Distinction. In The Amide Linkage: Selected structural Aspects in Chemistry,
Biochemistry, and Material Science; Greenberg, A., Breneman, C. M., Liebman, J.
F., Eds.; Wiley Interscience: New York, 2000; p 157.
6. (a) Chen, A.; Nelson, A.; Tanikkul, A. N.; Thomas, E. J. Tetrahedron Lett. 2001, 42,
1251; (b) Brain, C. T.; Chen, A.; Nelson, A.; Tanikkul, N.; Thomas, E. J.
Tetrahedron Lett. 2001, 42, 1247; (c) Sohma, Y.; Hayashi, Y.; Ito, T.; Matsumoto,
H.; Kimura, T.; Kiso, Y. J. Med. Chem. 2003, 46, 4124; (d) Palomo, C.; Aizpurua, J.
M.; Ganboa, I.; Oiarbide, M. Curr. Med. Chem. 2004, 11, 1837; (e) Ojima, I. Acc.
Chem. Res. 1995, 28, 383; (f) Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377;
(g) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395; (h)
D’hooghe, M.; Dekeukeleire, S.; Leemans, E.; De Kimpe, N. Pure Appl. Chem.
2010, 82, 1749.
sensitive); K1 (Chloroquine resistant); W2 (Chloroquine resistant)
strains for their malarial efficacy and KB cells, a cell line derived
from a human carcinoma of the nasopharynx, typically used as
an assay for antineoplastic agents, for cytotoxic profiles. KB cells
are maintained as monolayers in RPMI1640 + 10% HIFCS. All cul-
tures and assays are conducted at 37 °C under an atmosphere of
5% CO2/95% air mixture with Podophyllotoxin (POD) as the control
drug.13
The test compounds showed comparatively much weaker cyto-
toxic profiles compared to the standard agent Podophyllotoxin
while a comparable activity was observed when compared with
chloroquine. The results clearly revealed that the compounds
showed concentration dependent cytotoxicity with significant in-
crease in growth inhibition as the concentration increases from
10 lM to 100 lM as shown by the compounds 4e, 4f and 4g. The
compounds 4d–4g viz phenyl substituted triazoles have shown
potentially better cytotoxic profile compared to the carbome-
thoxy-substituted triazoles (4a–4c). The enhancement in activity
has been observed in case of N-cyclohexyl derivative 4e exhibiting
7. Nivsarkar, M.; Thavaselvam, D.; Prasanna, S.; Sharma, M.; Kaushik, M. P. Bioorg.
Med. Chem. Lett. 2005, 15, 1371.
8. (a) D’hooghe, M.; Dekeukeleire, S.; Mollet, K.; Lategan, C.; Smith, P. J.; Chibale,
K.; De Kimpe, N. J. Med. Chem. 2009, 52, 4058; (b) Anand, A.; Bhargava, G.;
Kumar, V.; Mahajan, M. P. Tetrahedron Lett. 2010, 51, 2312; (c) Singh, P.;
Bhargava, G.; Kumar, V.; Mahajan, M. P. Tetrahedron Lett. 2010, 51, 4272.
9. Nam, D. H.; Lee, K. Y.; Moon, C. S.; Lee, Y. S. Eur. J. Med. Chem. 2010, 45, 4288.
10. 3-Azido-1-cyclohexyl-4-styryl-azetidin-2-one (2d). Yellow oil, yield: 72%; IR
>99% growth inhibition with IC50 value of 8.36 lM better than that
of CQ (Table 1). A similar trend was observed in anti-malarial eval-
uation. The compounds 4e, 4f and 4g showed better antimalarial
efficacy among the test compounds with 4e exhibiting an IC50 va-
(KBr) m ;
max: 2108, 1755, 1514, 1388 cmÀ1 1H NMR (300 MHz, CDCl3), d 1.0–1.9
lue of 1.13, 1.21 and 1.00 lM against 3D-7, K1 and W2 strains. This
(m, 10H, Cyclohexyl H), 3.46 (m, 1H, Cyclohexyl H) 4.42 (dd, J = 5.4 Hz, 9.0 Hz,
1H, H2), 4.7 (d, J = 5.4 Hz,1H, H1), 6.15 (dd, J = 9.0 Hz, 15.9 Hz,1H, H3), 6.68 (d,
J = 15.9 Hz 1H, H4), 7.26–7.45 (m, 5H, Ar-H), 13C (CDCl3, 75 Hz): 22.3, 27.1, 31.1,
47.3, 53.3, 63.4, 123.3, 126.1, 127.0, 127.1, 128.0, 134.3, 173.3; MS m/z 296
(M+); Anal. calcd for C17H20N4O: C, 68.89 H,6.80; N, 18.90. Found: C, 68.83; H,
6.72; N, 18.86.
further confirms the presence of alkyl substituent preferably cyclo-
hexyl at N-1 and phenyl ring on the triazole being critical for good
activity profiles.
In conclusion, the synthesis of 3-azido-, 3-amino- and 3-(1,2,
3-triazol-1-yl)-b-lactams and their evaluation for antiplasmodial
and cytotoxic activity has been described. The compounds with
an N-cyclohexyl substituent in the b-lactam ring and a phenyl
group on the triazole showed better cytotoxicity as well as anti-
plasmodial activity. The results described indicate that these com-
pounds could serve as the basis for the development of a new
group of non-cytotoxic antiplasmodial agents.
11. Lin, W.; Zhang, X.; He, Z.; Jin, Y.; Gong, L.; Mi, A. Synth. Commun. 2002, 32, 3279.
12. General Procedure for the synthesis of triazole-tethered b-lactams (4). To a stirred
solution of azide (1 mmol) in ethanol:water (10:1) was added in succession
phenyl acetylene (1.1 mmol), copper sulphate (0.055 mmol) and sodium
ascorbate (0.143 mmol) at room temperature. On completion, as monitored
by tlc, water (15 ml) was added to the reaction mixture and extracted with
chloroform (2 Â 50). Combined oragnic layers were dried over anhydrous
sodium sulphate and concentrated under reduce pressure to result in a crude
product which was recrystallized using chloroform: hexane (2:10) mixture.
1-Cyclohexyl-3-(4-phenyl-[1,2,3]triazol-1-yl)-4-styryl-azetidin-2-one (4e). White
solid, yield 70%; mp 195–197 °C; IR (KBr)
NMR (300 MHz, CDCl3), 1.0–1.9 (m,10H, Cyclohexyl ring), 3.46 (m,1H,
m ;
max: 1755, 1514, 1388 cmÀ1 1H
Acknowledgement
d
Cyclohexyl ring), 5.13 (dd,J = 5.4 Hz, 9.0 Hz, 1H, H2), 5.80 (dd, J = 9.0 Hz,
15.9 Hz, 1H, H3), 6.36 (d, J = 5.4 Hz, 1H, H1), 6.71 (d, J = 15.9 Hz, 1H, H4), 7.26–
7.78 (m, 10H, Ar-H), 7.94 (s, 1H, triazole ring), 13C (CDCl3, 75 Hz): 22.3, 27.1,
31.1, 47.3, 60.4, 67.6, 123.5, 126.4, 127.2, 127.6, 127.9, 128.8, 129.0, 129.4,
131.4, 134.5, 134.8, 136.4, 173.3.; MS m/z 398 (M+); Anal. calcd for C25H26N4O:
C, 75.35 H, 6.58; N, 14.06. Found: C, 75.30; H, 6.52; N, 13.99.
Financial assistance from DST New Delhi under Fast Track
Young Scientist Scheme (VK) is gratefully acknowledged
Reference and notes
13. (a) Damayanthi, Y.; Lown, J. W. Curr. Med. Chem. 1998, 5, 205; (b) You, Y. Curr.
Pharm. Des. 2005, 11, 1695; (c) Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16,
327.
1. Guinovart, C.; Navia, M. M.; Tanner, M.; Alonso, P. L. Curr. Mol. Med. 2006, 6,
137.
14. (a) Kasim, N. A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernas,
H.; Hussain, A. S.; Junginger, H. E.; Stavchansky, S. A.; Midha, K. K.; Shah, V. P.;
Amidon, G. L. Mol. Pharma. 2004, 1, 85–96; (b) Podunavac-kuzmanovic, S. O.;
Cvetkovic, D. D. Chem. Ind. Chem. Eng. Quart. 2011, 17, 9; (c) Anoaica, P. G.;
Anoaica, M. B.; Amzoiu, E.; Giubelan, L.; Tatucu, M. Farmacia 2010, 58, 515; (d)
Uesawa, Y.; Mohri, K. Yakugaku Zasshi 2008, 128, 117.
2. (a) Kumar, A.; Katiyar, S. B.; Agarwal, A.; Chauhan, P. M. S. Curr. Med. Chem.
2003, 10, 1137; Chemotherapy of Malaria; Bruce-Chwatt, L. J., Black, R. H.,
Canfield, C. J., Clyde, D. F., Peters, W., Wernsdorfer, W. H., Eds., Second ed;
World Health Organization: Geneva, 1986.
3. (a) Edwards, G.; Biagini, G. A. Br. J. Clin. Pharmacol. 2006, 61, 690; (b)
Mutabingwa, T. K. Acta Trop. 2005, 95, 305.