5388 Biochemistry, Vol. 49, No. 25, 2010
Go et al.
6. Amyes, T. L., and Richard, J. P. (2007) Proton Transfer to and
from carbon in model systems. In Hydrogen-Transfer Reactions,
Volume 3. Biological Aspects I-II (Hynes, J. T., Klinman, J. P.,
Limbach, H.-H., and Schowen, R. L., Eds.) pp 949-973, Wiley-
VCH, Weinheim, Germany.
7. Jogl, G., Rozovsky, S., McDermott, A. E., and Tong, L. (2003)
Optimal alignment for enzymatic proton transfer: Structure of the
˚
Michaelis complex of triosephosphate isomerase at 1.2-A resolution.
Proc. Natl. Acad. Sci. U.S.A. 100, 50–55.
8. Xiang, J., Sun, J., and Sampson, N. S. (2001) The importance of hinge
sequence for loop function and catalytic activity in the reaction
catalyzed by triosephosphate isomerase. J. Mol. Biol. 307, 1103–1112.
9. Xiang, J., Jung, J.-y., and Sampson, N. S. (2004) Entropy effects on
protein hinges: The reaction catalyzed by triosephosphate isomerase.
Biochemistry 43, 11436–11445.
31. Collins, G. C. S., and George, W. O. (1971) Nuclear magnetic
resonance spectra of glycolaldehyde. J. Chem. Soc. B, 1352–1355.
32. O’Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2005) Hydron
transfer catalyzed by triosephosphate isomerase. Products of isomer-
ization of (R)-glyceraldehyde 3-phosphate in D2O. Biochemistry 44,
2610–2621.
33. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D.,
and Bairoch, A. (2003) ExPASy: The proteomics server for in-depth
protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788.
34. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.
R., Appel, R. D., and Bairoch, A. (2005) in Proteomics Protocols
Handbook (Walker, J. M., Ed.) pp 571-607, Humana Press Inc.,
Totowa, NJ.
35. Plaut, B., and Knowles, J. R. (1972) pH-dependence of the triose
phosphate isomerase reaction. Biochem. J. 129, 311–320.
36. Nickbarg, E. B., and Knowles, J. R. (1988) Triosephosphate isomer-
ase: Energetics of the reaction catalyzed by the yeast enzyme expressed
in Escherichia coli. Biochemistry 27, 5939–5947.
10. Kursula, I., and Wierenga, R. K. (2003) Crystal structure of triose-
˚
phosphate isomerase complexed with 2-phosphoglycolate at 0.83-A
resolution. J. Biol. Chem. 278, 9544–9551.
11. Blacklow, S. C., Raines, R. T., Lim, W. A., Zamore, P. D., and
Knowles, J. R. (1988) Triosephosphate isomerase catalysis is diffusion
controlled. Biochemistry 27, 1158–1165.
12. Amyes, T. L., O’Donoghue, A. C., and Richard, J. P. (2001) Con-
tribution of phosphate intrinsic binding energy to the enzymatic rate
acceleration for triosephosphate isomerase. J. Am. Chem. Soc. 123,
11325–11326.
37. Richard, J. P. (1991) Kinetic parameters for the elimination reaction
catalyzed by triosephosphate isomerase and an estimation of the
reactions physiological significance. Biochemistry 30, 4581–4585.
38. Pompliano, D. L., Peyman, A., and Knowles, J. R. (1990) Stabiliza-
tion of a reaction intermediate as a catalytic device: Definition of the
functional role of the flexible loop in triosephosphate isomerase.
Biochemistry 29, 3186–3194.
13. Morrow, J. R., Amyes, T. L., and Richard, J. P. (2008) Phosphate
binding energy and catalysis by small and large molecules. Acc. Chem.
Res. 41, 539–548.
14. Richard, J. P. (1984) Acid-base catalysis of the elimination and iso-
merization reactions of triose phosphates. J. Am. Chem. Soc. 106,
4926–4936.
15. Amyes, T. L., Richard, J. P., and Tait, J. J. (2005) Activation of
orotidine 50-monophosphate decarboxylase by phosphite dianion:
The whole substrate is the sum of two parts. J. Am. Chem. Soc. 127,
15708–15709.
39. O’Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2005) Hydron
transfer catalyzed by triosephosphate isomerase. Products of isomeri-
zation of dihydroxyacetone phosphate in D2O. Biochemistry 44, 2622–
2631.
40. O’Donoghue, A. C., Amyes, T. L., and Richard, J. P. (2008) Slow
proton transfer from the hydrogen-labelled carboxylic acid side chain
(Glu-165) of triosephosphate isomerase to imidazole buffer in D2O.
Org. Biomol. Chem. 6, 391–396.
41. Barnett, S. A., Amyes, T. L., Wood, B. M., Gerlt, J. A., and Richard,
J. P. (2008) Dissecting the Total Transition State Stabilization
Provided by Amino Acid Side Chains at Orotidine 50-Monophosphate
Decarboxylase: A Two-Part Substrate Approach. Biochemistry 47,
7785–7787.
42. Go, M. K. (2009) Studies on enzymatic and non-enzymatic proton
transfer in aqueous solutions. Ph.D. Thesis, University at Buffalo,
State University of New York, Buffalo, NY.
43. Davenport, R. C., Bash, P. A., Seaton, B. A., Karplus, M., Petsko, G.
A., and Ringe, D. (1991) Structure of the triosephosphate isomerase-
phosphoglycolohydroxamate complex: An analog of the intermediate
on the reaction pathway. Biochemistry 30, 5821–5826.
44. Bash, P. A., Field, M. J., Davenport, R. C., Petsko, G. A., Ringe, D.,
and Karplus, M. (1991) Computer simulation and analysis of the
reaction pathway of triosephosphate isomerase. Biochemistry 30,
5826–5832.
16. Tsang, W.-Y., Amyes, T. L., and Richard, J. P. (2008) A substrate in
pieces: Allosteric activation of glycerol 3-phosphate dehydrogenase
(NADþ) by phosphite dianion. Biochemistry 47, 4575–4582.
17. Lolis, E., and Petsko, G. A. (1990) Crystallographic analysis of the
complex between triosephosphate isomerase and 2-phosphoglycolate at
˚
2.5-A resolution: Implications for catalysis. Biochemistry 29, 6619–6625.
18. Knowles, J. R. (1991) To build an enzyme. Philos. Trans. R. Soc.
London, Ser. B 332, 115–121.
19. Klotz, I. M., and Franzen, J. S. (1962) Hydrogen bonds between
model peptide groups in solution. J. Am. Chem. Soc. 84, 3461–3466.
20. Susi, H., Timasheff, S. N., and Ard, J. S. (1964) Near infrared inves-
tigation of interamide hydrogen bonding in aqueous solution. J. Biol.
Chem. 239, 3051–3054.
21. Lodi, P. J., Chang, L. C., Knowles, J. R., and Komives, E. A. (1994)
Triosephosphate isomerase requires a positively charged active site:
The role of lysine-12. Biochemistry 33, 2809–2814.
22. Joseph-McCarthy, D., Lolis, E., Komives, E. A., and Petsko, G. A.
(1994) Crystal structure of the K12M/G15A triosephosphate iso-
merase double mutant and electrostatic analysis of the active site.
Biochemistry 33, 2815–2823.
23. O’Connor, E. J., Tomita, Y., and McDermott, A. E. (1994) Synthesis
of (1,2-13C2)-2-phosphoglycolic acid. J. Labelled Compd. Radiopharm.
34, 735–740.
24. Bergemeyer, H. U., Haid, E., Nelboeck-Hochstetter, M., and Pelz, O.
(1972) Process for preparing open ring tetrose and triose phosphate
acetals and phosphate ketals. U. S. Patent 3,662,037.
25. Lodi, P. J., and Knowles, J. R. (1991) Neutral imidazole is the electro-
phile in the reaction catalyzed by triosephosphate isomerase: Struc-
tural origins and catalytic implications. Biochemistry 30, 6948–6956.
26. Straus, D., and Gilbert, W. (1985) Chicken triosephosphate isomerase
complements an Escherichia coli deficiency. Proc. Natl. Acad. Sci.
U.S.A. 82, 2014–2018.
27. Sun, J., and Sampson, N. S. (1999) Understanding protein lids:
Kinetic analysis of active hinge mutants in triosephosphate isomerase.
Biochemistry 38, 11474–11481.
28. Go, M. K., Amyes, T. L., and Richard, J. P. (2009) Hydron transfer
catalyzed by triosephosphate isomerase. Products of the direct and
phosphite-activated isomerization of [1-13C]-glycolaldehyde in D2O.
Biochemistry 48, 5769–5778.
45. Cui, Q., and Karplus, M. (2001) Triosephosphate isomerase: A
theoretical comparison of alternative pathways. J. Am. Chem. Soc.
123, 2284–2290.
46. Komives, E. A., Chang, L. C., Lolis, E., Tilton, R. F., Petsko, G. A.,
and Knowles, J. R. (1991) Electrophilic catalysis in triosephosphate
isomerase: The role of histidine-95. Biochemistry 30, 3011–3019.
47. Belasco, J. G., and Knowles, J. R. (1980) Direct observation of
substrate distortion by triosephosphate isomerase using Fourier
transform infrared spectroscopy. Biochemistry 19, 472–477.
48. Keeffe, J. R., and Kresge, A. J. (1990) Kinetics and mechanism of
enolization and ketonization. In The Chemistry of Enols (Rappoport,
Z., Ed.) pp 399-480, John Wiley and Sons, Chichester, U.K.
49. Jencks, W. P. (1972) Requirements for general acid-base catalysis of
complex reactions. J. Am. Chem. Soc. 94, 4731–4732.
50. Richard, J. P. (1998) The Enhancement of Enzymatic Rate Accelera-
tions by Brønsted Acid-Base Catalysis. Biochemistry 37, 4305–4309.
51. Sham, Y. Y., Muegge, I., and Warshel, A. (1998) The effect of protein
relaxation on charge-charge interactions and dielectric constants of
proteins. Biophys. J. 74, 1744–1753.
52. Simonson, T., and Brooks, C. L. (1996) Charge Screening and the
Dielectric Constant of Proteins: Insights for Molecular Dynamics.
J. Am. Chem. Soc. 118, 8452–8458.
53. Simonson, T., Carlsson, J., and Case, D. A. (2004) Proton Binding to
Proteins: pKa Calculations with Explicit and Implicit Solvent Models.
J. Am. Chem. Soc. 126, 4167–4180.
29. Glasoe, P. K., and Long, F. A. (1960) Use of glass electrodes to
measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–190.
30. Amyes, T. L., and Richard, J. P. (2007) Enzymatic catalysis of proton
transfer at carbon: Activation of triosephosphate isomerase by phos-
phite dianion. Biochemistry 46, 5841–5854.
54. Antosiewicz, J., McCammon, J. A., and Gilson, M. K. (1996) The
determinants of pKas in proteins. Biochemistry 35, 7819–7833.
55. Georgescu, R. E., Alexov, E. G., and Gunner, M. R. (2002) Combin-
ing conformational flexibility and continuum electrostatics for calcu-
lating pKas in proteins. Biophys. J. 83, 1731–1748.