W. D. Schmitz et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1619–1621
1621
Compounds 2A–J, 7A,B were also evaluated for binding
affinity at norepinephrine and dopamine transporters.
They were all found to be selective for the serotonin
transporter over both the norepinephrine and dopamine
5. (a) Horn, A. S. J. Neurochem. 1973, 21, 883–888; (b)
Adkins, E. M.; Barker, E. L.; Blakely, R. D. Mol.
Pharmacol. 2001, 59, 514–523.
6
. Cipollina, J. A., Mattson, R. J., Sloan, C. P. U.S. Patent
5468767, 1995.
1
4
transporters.
7
. Heinrich, T.; B o¨ ttcher, H.; Gericke, R.; Bartoszyk, G. D.;
Anzali, S.; Seyfried, C. A.; Greiner, H. E.; van Amster-
dam, C. J. Med. Chem. 2004, 47, 4684–4692.
. Audia, J. E., Koch, D. J., Mabry, T. E., Rocco, V., P., Xu,
Y-C. U.S. Patent 5846982, 1998.
Because of the inherent flexible nature of the aminopro-
pyl sidechain in our homotryptamine derivatives, con-
formational constraint was seen as a logical next step
in understanding our new SSRI pharmacophore. While
the incorporation of conformational restriction in sero-
tonin agonists for selective binding at 5-HT receptor
8
9. (a) Meagher, K. L.; Mewshaw, R. E.; Evrard, D. A.;
Zhou, P.; Smith, D. L.; Scerni, R.; Spangler, T.; Abulh-
awa, S.; Shi, X.; Schechter, L. E.; Andree, T. H. Bioorg.
Med. Chem. Lett. 2001, 11, 1885–1888; (b) Mewshaw, R.
E.; Zhou, D.; Zhou, P.; Shi, X.; Hornby, G.; Spangler, T.;
Scerni, R.; Smith, D.; Schechter, L. E.; Andree, T. H. J.
Med. Chem. 2004, 47, 3823–3842; For a discussion of
indolealkylamines as 5-HT1A modulators, see: Glennon,
R. A. Drug Dev. Res. 1992, 26, 251–274.
1
5
subtypes has been previously described, fewer reports
have detailed the effects of such studies on SERT li-
1
6
gands. As an initial investigation into the effect of side-
chain conformational restriction on the binding affinity
of homotryptamines 2C and 2J, the corresponding
quinuclidines 7A and 7B were synthesized as described
above. The activities of the pairs (2C vs 7A and 2J vs
1
0. (a) Pinder, R. M.; Green, D. M.; Brewster, K.; Thompson,
P. B. J. J. Pharm. Pharmacol. 1973, 25, 847–848; (b) 5-HT6
binding: Glennon, R. A.; Bondarev, M.; Roth, B. Med.
Chem. Res. 1999, 9(2), 108–117; (c) Dukat, M.; Smith, C.;
Herrick-Davis, K.; Teitler, M.; Glennon, R. A. Bioorg.
Med. Chem. 2004, 12, 2545–2552.
7
B) were not significantly different within each pair,
suggesting that the quinuclidine conformation did not
significantly alter the molecular recognition of the
homotryptamines for SERT. We are continuing in our
efforts to examine other conformational constraints of
the aminopropyl sidechain in 2C and 2J and will report
those results in due course.
1
1
1
1. Denhart, D. J.; Mattson, R. J.; Ditta, J. L.; Macor, J. E.
Tetrahedron Lett. 2004, 45, 3803–3805.
2. Macor, J. E.; Blank, D. H.; Post, R. J.; Ryan, K.
Tetrahedron Lett. 1992, 33, 8011–8014.
3. Ricciardi, F. J.; Doukas, P. H. Heterocycles 1986, 24, 971–
In conclusion, simple N,N-dimethylhomotryptamines
exhibited potent binding affinity at SERT. Those
derivatives containing an electron withdrawing group
at the C5 position of the indole nucleus were the most
potent SSRIs. Introduction of a quinuclidine moiety as
a conformational restriction within the propylamine
side chain did not appreciably affect SERT binding
affinity.
9
77.
14. Percent inhibition at both norepinephrine and dopamine
transporters was found to be <50% at a concentration of
1 lM for all active (<1000 nM) SERT compounds listed in
Table 1. The most potent compounds exhibited the best
selectivity; for example, 2J showed 14% inhibition at the
norepinephrine transporter and 4% at the dopamine
transporter at 1 lM.
5. (a) Macor, J. E.; Blake, J.; Fox, C. B.; Johnson, C.; Koe,
B. K.; Lebel, L. A.; Morrone, J. M.; Ryan, K.; Schmidt,
A. W.; Schulz, D. W.; Zorn, S. H. J. Med. Chem. 1992, 35,
4503–4505; (b) Macor, J. E.; Fox, C. B.; Johnson, C.; Koe,
B. K.; Lebel, L. A.; Zorn, S. H. J. Med. Chem. 1992, 35,
3625–3632; (c) Matzen, L.; Amsterdam, C.; Rautenberg,
W.; Greiner, H. E.; Harting, J.; Seyfried, C. A.; Bottcher,
H. J. Med. Chem. 2000, 43, 1149–1157.
16. (a) Boy, K. M.; Dee, M.; Yevich, J.; Torrente, J.; Gao, Q.;
Iben, L.; Stark, A.; Mattson, R. J. Bioorg. Med. Chem.
Lett. 2004, 14, 4467–4470; (b) Toda, N.; Tago, K.;
Marumoto, S.; Takami, K.; Ori, M.; Yamada, N.;
Koyama, K.; Naruto, S.; Abe, K.; Yamazaki, R.; Hara,
T.; Aoyagi, A.; Abe, Y.; Kaneko, T.; Kogen, H. Bioorg.
Med. Chem. 2003, 11, 4389–4415.
1
References and notes
1
2
3
. Vaswani, M.; Linda, F. K.; Ramesh, S. Prog. Neuro—
Psycopha. 2003, 27, 85–102.
. Spinks, D.; Spinks, G. Curr. Med. Chem. 2002, 9, 799–
8
10.
. Preskorn, S. H.; Ross, R.; Stanga, C. Y. In Antidepres-
sants: Past, Present and Future; Preskorn, S. H., Feighner,
J. P., Stanga, C. Y., Eds.; Springer: Berlin, 2004; pp 241–
2
62.
4
. Baker, G. B.; Fang, J.; Sinha, S.; Coutts, R. T. Neurosci.
Biobehav. R. 1998, 22, 325–333.