Chemistry - A European Journal
10.1002/chem.201806092
FULL PAPER
Dtsch. Chem. Ges. 1885, 18, 109; d) K. Löffler, C. Freytag, Ber. Dtsch.
Chem. Ges. 1909, 42, 3427.
Experimental Section
[
[
[
7]
8]
9]
a) Manfred E. Wolff, Chem. Rev. 1963, 63, 55; b) G. Majetich, K.
Wheless, Tetrahedron 1995, 51, 7095; c) X.-Q. Hu, J.-R. Chen, W.-J.
Xiao, Angew. Chem. Int. Ed. 2017, 56, 2.
The following procedure is representative for the electrochemical
preparation of the N-tosyl-protected pyrrolidines:
a) R. Hernández, A. Rivera, J. A. Salazar, E. Suárez, J. Chem. Soc.
Chem. Commun. 1980, 958; b) C. Betancor, J. I. Concepción, R.
Hernández, J. A. Salazar, E. Suárez, J. Org. Chem. 1983, 48, 4430.
a) P. DeArmas, R. Carrau, J. L. Concepción, C. G. Francisco, R.
Hernández, E. Suárez, Tetrahedron Lett. 1985, 26, 2493; For related
protocols, see: b) R. Carrau, R. Hernández, E. Suárez, C. Betancor, J.
A cell equipped with a stirring bar was loaded with 0.2 mmol of N-tosyl
alkylamine followed by 4 mL of 0.1 M KBr in methanol with 0.025 M
NaOMe. The reaction vial was closed with a lid equipped with 2
electrodes (2 cm × 0.7 cm each). The electrodes were adjusted to allow
for the normal spinning of the stirring bar, to be immersed in liquid at
2
1
.5 cm to generate a surface area of approximately 1 cm , and to
Chem. Soc. Perkin Trans.
1 1987, 937; c) P. De Armas, C. G.
constantly be separated by 0.6 cm. The stirring rates were set to be from
00 to 1000 rpm to facilitate proper mass transfer during the electrolysis.
Francisco, R. Hernández, J. A. Salazar, E. Suárez, J. Chem. Soc.
Perkin Trans. 1 1988, 3255; d) C. G. Francisco, A. J. Herrera, E.
Suárez J. Org. Chem. 2003, 68, 1012; e) A. Martín, I. Pérez-Martín, E.
Suárez; Tetrahedron 2009, 65, 6147; f) R. Fan, D. Pu, F. Wen, J. Wu, J.
Org. Chem. 2007, 72, 8994.
6
Stirring too quickly must be avoided to prevent vortex formation, which
may change the actual surface area of the electrodes. For the halogen-
free reaction, 2 graphite plates were used as electrodes and 4 mL of
0.125 M NaOMe in methanol solution were used for 0.1 mmol of starting
[
10] a) C. Martínez, K. Muñiz, Angew. Chem. Int. Ed. 2015, 54, 8287; For
related protocols, see: b) N. R. Paz, D. Rodríguez-Sosa, H. Valdés, R.
Marticorena, D. Melián, M. B. Copano, C. C. González, A. J. Herrera,
Org. Lett. 2015, 17, 2370; c) C. Q. O'Broin, P. Fernández, C. Martínez,
K. Muñiz, Org. Lett. 2016, 18, 436; d) P. Becker, T. Duhamel, J. C.
Stein, M. Reiher, K. Muñiz, Angew. Chem. Int. Ed. 2017, 56, 8004; e) P.
Becker, T. Duhamel, C. Martínez, K. Muñiz, Angew. Chem. Int. Ed.
material. The power supply was connected, and the reaction mixture was
2
electrolyzed under a constant current (J = 10 mA/cm ). The reaction
progression was monitored by TLC or GC-MS after the theoretically
required amount of electricity had passed (2 F/mol) and then after every
1
F/mol until full conversion was reached. After the reaction was
completed, the mixture was transferred via syringe to a 25-mL RB flask,
the electrodes were washed with methanol, and the combined solvents
were removed in vacuo. The residue was redissolved in DCM, 4 g of
silica was added, and the solvent was carefully removed again to afford a
free-flowing powder, which was directly purified by column
chromatography. Additional experimental details are provided in the
Supplemental Information.
2018, 57, 5166.
[
[
11] E. A. Wappes, S. C. Fosu, T. C. Chopko, D. A. Nagib, Angew. Chem.
Int. Ed. 2016, 55, 9974.
12] a) O. R. Luca, J. L. Gustafson, S. M. Maddox, A. Q. Fenwick, D. C.
Smith, Org. Chem. Front. 2015, 2, 823; b) Organic Electrochemistry,
5th Edition (Eds.: O. Hammerich, B. Speiser), CRC Press, Boca Raton,
2015; c) E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2,
Keywords: Amination • Electrosynthesis • 1,5-HAT • pyrrolidines
302; d) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117,
3230; e) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485; f) S.
1
•
flow electrolysis
Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, S. R. Waldvogel,
Angew. Chem. Int. Ed. 2018, 57, 6018; g) A. Wiebe, T. Gieshoff, S.
Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, Angew. Chem. Int. Ed.
[
1]
a) Hydrogen-Transfer Reactions (Eds.: J. T. Hynes, J. P. Klinman, H.-H.
Limbach, R. L. Schowen), Wiley-VCH, Weinheim, 2007; b) M. Nechab,
S. Mondal, M. P. Bertrand, Chem. Eur. J. 2014, 20, 16034; c) L.
Capaldo, D. Ravelli, Eur. J. Org. Chem. 2017, 2056; d) X.-Q. Hu, J.-R.
Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2017, 56, 1960; e) L. M.
Stateman, K. M. Nakafuku, D. A. Nagib, Synthesis 2018, 50, 1569.
2018, 57, 5594; f) K. Mitsudo, Y. Kurimoto, K. Yoshioka, S. Suga,
Chem. Rev. 2018, 118, 5985.
[
[
13] a) J. H. Wagenknecht, J. Chem. Educ. 1983, 60, 271; b) D. S. P.
Cardoso, B. Šljukić, D. M. F. Santos, C. A. C. Sequeira, Org. Process
Res. Dev. 2017, 21, 1213.
[
[
2]
3]
Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds.: C.
Chatgilialoglu, A. Studer), John Wiley & Sons, Ltd., Chichester, 2012.
a) A. Popelak, G. Lettenbauer, in The Alkaloids: Chemistry and
Physiology, Vol. 9 (Ed.: R. H. F. Manske), Academic Press: New York,
14] For examples, see: a) T. Shono, Y. Matsumura, S. Katoh, K. Takeuchi,
K. Sasaki, T. Kamada, R. Shimizu, J. Am. Chem. Soc., 1990, 112,
2368; b) H.-C. Xu, J. M. Campbell, K. D. Moeller; J. Org. Chem. 2014,
79, 379; c) L. Zhu, P. Xiong, Z.-Y. Mao, Y.-H. Wang, X. Yan, X. Lu, H.-
1967, pp. 467 – 482; b) K. Kawanishi, Y. Uhara, Y. Hashimoto, J. Nat.
C. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226; d) S. Zhang, L. Li, M.
Xue, R. Zhang, K. Xu, C. Zeng, Org. Lett. 2018, 20, 3443; e) Z.-W. Hou,
Z.-Y. Mao, Y. Y. Melcamu, X. Lu, H.-C. Xu Angew. Chem. Int. Ed. 2018,
Prod. 1982, 45, 637; c) S. F. Martin, in The Alkaloids: Chemistry and
Pharmacology, Vol. 30 (Ed. A. Brossi) Academic Press, New York,
1987, pp. 251 – 376; d) E. Fattorusso, O. Taglialatela-Scafati, Modern
57, 1636; f) T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller, S. R.
Alkaloids, (Eds.: E. Fattorusso, O. Taglialatela-Scafati) Wiley-VCH,
Weinheim, 2007; e) R. F. George, N. S. M. Ismail, J. Stawinski, A. S.
Girgis, Eur. J. Med. Chem. 2013, 68, 339; f) C. Bhat, Chemistry Open.
Waldvogel, Chem. Commun., 2017, 53, 2974; g) T. Gieshoff, A. Kehl, D.
Schollmeyer, K. D. Moeller, S. R. Waldvogel, J. Am. Chem. Soc. 2017,
139, 12317; h) T. Gieshoff, D. Schollmeyer, S. R. Waldvogel, Angew.
2015, 4, 192; g) Á. A. Kelemen, G. Satala, A. J. Bojarski, G. M. Keserű,
Chem. Int. Ed., 2016, 55, 9437.
Molecules 2017, 22, 2221.
[
15] a) P. T. Anastas, J. C. Warner in Green Chemistry: Theory and Practice
[
4]
a) C. B. Burness, Drugs 2015, 75, 1947; b) J. Y. L. Chung, J. P. Scott,
C. Anderson, B. Bishop, N. Bremeyer, Y. Cao, Q. Chen, R. Dunn, A.
Kassim, D. Lieberman, A. J. Moment, F. Sheen, M. Zacuto, Org.
Process Res. Dev. 2015, 19, 1760; c) N. Ashousha, Pharma Chemica
(Oxford Univ. Press) 1998; b) F. P. Byrne, S. Jin, G. Paggiola, T. H. M.
Petchey, J. H. Clark, T. J. Farmer, A. J. Hunt, C. R. McElroy, J.
Sherwood, Sustain. Chem. Process 2016, 4:7.
[
[
16] S. F. Nelsen, P. J. Hintz, J. Am. Chem. Soc. 1972, 94, 7114.
17] For selected examples, see: a) A. Deronzier, D. Limosin, J.-C. Moutet,
Electrochim. Acta 1987, 32, 1643; b) K. Schnatbaum, H.-J. Schäfer,
Synthesis 1999, 5, 864; c) E. M. Belgsir, H.-J. Schäfer, Electrochem.
Commun. 2001, 3, 32; d) D. Liaigre, T. Breton, E. M. Belgsir,
Electrochem. Commun. 2005, 7, 312; e) E. J. Horn, B. R. Rosen, Y.
Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533,
2
016, 8, 292; d) R. A. Duffy, C. Morgan, R. Naylor, G. A. Higgins, G. B.
Varty, J. E. Lachowicz, E. M. Parker, Pharmacol. Biochem. Behav.
012, 102, 95; e) Y.-A. Heo, E. D. Deeks, Drugs 2017, 77, 1687.
2
[
[
5]
6]
A. C. Flick, H. X. Ding, C. A. Leverett, S. J. Fink, C. J. O’Donnel, J. Med.
Chem. 2018, 61, 7004.
a) A. W. Hofmann, Ber. Dtsch. Chem. Ges. 1883, 16, 558; b) A. W.
Hofmann, Ber. Dtsch. Chem. Ges. 1885, 18, 5; c) A. W. Hofmann, Ber.
77.
This article is protected by copyright. All rights reserved.