10.1002/chem.202001355
Chemistry - A European Journal
COMMUNICATION
P. Wiesenfeldt, Z. Nairoukh, W. Li, F. Glorius, Science 2017, 357, 908–
912; h) C. J. Thomson, Q. Zhang, N. Al-Maharik, M. Bühl, D. B. Cordes,
A. M. Z. Slawin, D. O’Hagan, Chem. Commun. 2018, 54, 8415–8418; i)
F. Scheidt, M. Schäfer, J. C. Sarie, C. G. Daniliuc, J. J. Molloy, R. Gilmour,
Angew. Chem. 2018, 130, 16669–16673; Angew. Chem. Int. Ed. 2018,
57, 16431–16435; j) A. Sadurní, R. Gilmour, Eur. J. Org. Chem. 2018,
3684–3687; k) Z. Fang, D. B. Cordes, A. M. Z. Slawin, D. O'Hagan, Chem.
Commun. 2019, 55, 10539–10542.
As expected for the sterically demanding methyl group, the
Meequatorial conformer is preferred in both compounds, both in the
gas phase and in chloroform (Scheme 4). By switching to more
polar solvents such as water, the conformational equilibrium can
be significantly shifted. Whilst compound 16 retains its Meequatorial
conformer in polar solution, the fluorine atoms in 17 induce a
conformational inversion, directing the methyl group into the
sterically hindered axial position – showcasing how fluorine
substitution can be utilized to manipulate the conformational
behavior of polar molecules.[12]
In conclusion, the conformational behavior of fluorinated
piperidines is influenced by the interplay of different forces such
as electrostatic interactions, hyperconjugation and steric factors.
In this communication we provide, for the first time, a detailed and
systematic overview of the major parameters that can control the
conformational behaviour of fluorinated piperidine derivatives
while covering a wide range of substitution patterns on the
piperidine ring. The fluorinated piperidines were analysed
experimentally (through NMR studies) and computationally
(through DFT computations). Interestingly, in addition to the
common forces that contribute to the stabilisation of a specific
conformer, we realized that the dipole moment can be used to
further manipulate the orientation of the fluorine atoms,
particularly in polar solutions. These forces may eventually be
used to fine-tune the conformational structure of lead compounds
which can dramatically affect their likelihood of success in
therapeutic applications.
[4]
[5]
a) D. O’Hagan, Nat. Prod. Rep. 2000, 17, 435–446; b) E. Vitaku, D. T.
Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257–10274.
The strong axial preference in 3-fluoropiperidinium cation and analogues
in the gas phase was dictated by electrostatic interactions, which can be
both charge dipole (C–F···HN+) and hydrogen bond (F···H(N+))
interactions. In aqueous solution, charge dipole interactions were
strongly attenuated and hyperconjugation was calculated to be at least
competitive with Lewis-type interactions. For more information, see ref 6.
a) D. C. Lankin, N. S. Chandrakumar, S. N. Rao, D. P. Spangler, J. P.
Snyder, J. Am. Chem. Soc. 1993, 115, 3356–3357; b) J. P. Snyder, N.
S. Chandrakumar, H. Sato, D. C. Lankin, J. Am. Chem. Soc. 2000, 122,
544–545; c) A. Sun, D. C. Lankin, K. Hardcastle, J. P. Snyder, Chem.
Eur. J. 2005, 11, 1579–1591; d) J. M. Silla, W. G. D. P. Silva, R. A.
Cormanich, R. Rittner, C. F. Tormena, M. P. Freitas, J. Phys. Chem. A
2014, 118, 503–507.
[6]
[7]
a) N. E. J. Gooseman, D. O'Hagan, M. J. G. Peach, A. M. Z. Slawin, D.
J. Tozer, R. J. Young, Angew. Chem. 2007, 119, 6008–6012; Angew.
Chem. Int. Ed. 2007, 46, 5904–5908; b) C. Thiehoff, L. Schifferer, C. G.
Daniliuc, N. Santschi, R. Gilmour, J. Fluorine Chem. 2016, 182, 121–
126; c) I. G. Molnár, M. C. Holland, C. G. Daniliuc, K. N. Houk, R. Gilmour,
Synlett 2016, 27, 1051–1055; d) N. Santschi, C. Thiehoff, M. C. Holland,
C. G. Daniliuc, K. N. Houk, R. Gilmour, Organometallics 2016, 35, 3040–
3044; e) F. Scheidt, P. Selter, N. Santschi, M. C. Holland, D. V. Dudenko,
C. G. Daniliuc, C. Mück-Lichtenfeld, M. R. Hansen, R. Gilmour, Chem.
Eur. J. 2017, 23, 6142–6149; f) C. Thiehoff, Y. P. Rey, R. Gilmour, Isr. J.
Chem. 2017, 57, 92–100; g) R. A. Cormanich, D. O’Hagan, M. Bühl,
Angew. Chem. 2017, 129, 7975–7978; Angew. Chem. Int. Ed. 2017, 56,
7867–7870; h) M. Aufiero, R. Gilmour, Acc. Chem. Res. 2018, 51, 1701–
1710; i) C. S. Teschers, C. G. Daniliuc, G. Kehr, R. Gilmour, J. Fluorine
Chem. 2018, 210, 1–5.
Acknowledgements
All computations were carried out on the high-performance
computing system PALMA II (WWU Münster). We thank Prof.
Ryan Gilmour (WWU Münster), Prof. Alexander Hillisch (Bayer
Pharma AG) and Professor Peer Kirsch (Merck KGaA) for helpful
discussions. Financial support by the European Research Council
(ERC Advanced Grant Agreement no. 788558) and Deutsche
Forschungsgemeinschaft (SPP2102) is gratefully acknowledged.
[8]
[9]
M. P. Freitas, Org. Biomol. Chem. 2013, 11, 2885–2890.
Z. Nairoukh, M. Wollenburg, C. Schlepphorst, K. Bergander, F. Glorius,
Nat. Chem. 2019, 11, 264–270.
[10] It should be noted that the vicinal 3J(19F,1Ha) coupling constants provide
useful insight into the conformational structure, since large values of
3J(19F,1Ha) indicate axial preference and small values of 3J(F,Ha) indicate
equatorial preference (for more details, see Supplementary Section 4,
ref 9).
Keywords: piperidines • fluorine • conformational behavior •
solvation effect • NMR analysis
[11] a) R. J. Abraham, L. Cavalli, K .G. R. Pachler, Mol. Phys. 1966, 11, 471–
494; b) R. J. Abraham, M. A. Cooper, Chem. Commun. 1966, 588–589;
c) R. J. Abraham, J. Phys. Chem. 1969, 73, 1192–1199; d) R. J. Abraham,
G. Gatti, J. Chem. Soc. B 1969, 961–968; e) R. J. Abraham, K. Parry, J.
Chem. Soc. B 1970, 539–545; f) L. Cavalli, R.J. Abraham, Mol. Phys.
1970, 19, 265–274; g) R. J. Abraham, R. H. Kemp, J. Chem. Soc. B 1971,
1240–1245.
[1]
a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886; b)
M. Hird, Chem. Soc. Rev. 2007, 36, 2070–2095; c) S. Purser, P. R.
Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320–330;
d) P. T. Lowe, D. O’Hagan, J. Fluor. Chem. 2020, DOI:
10.1016/j.jfluchem.2019.109420.
[12] Examples on chameleon molecules: a) P. A. Carrupt, B. Testa, A.
Bechalany, N. El Tayar, P. Descas, D. Perrissoud, J. Med. Chem. 1991,
34, 1272–1275; b) N. El Tayar, A. E. Mark, P. Vallat, R. M. Brunne, B.
Testa, W. F. van Gunsteren, J. Med. Chem. 1993, 36, 3757–3764; c)
L. Fielding, J. K. Clark, R. McGuire, J. Org. Chem. 1996, 61, 5978–5981;
d) S. J. Fox, S. Gourdain, A. Coulthurst, C. Fox, I. Kuprov, J W. Essex,
C-K Skylaris, B Linclau, Chem. Eur. J. 2015, 21, 1682–1691.
[2]
a) P. Shah, A. D. Westwell, J. Enzyme Inhib. Med. Chem. 2007, 22, 527–
540; b) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308–319; c) J. Wang, M.
Sánchez-Roselló, J. L. Aceꢀa, C. del Pozo, A. E. Sorochinsky, S. Fustero,
V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506; d) E. P.
Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med.
Chem. 2015, 58, 8315–8359.
[3]
a) A. J. Durie, A. M. Z. Slawin, T. Lebl, P. Kirsch, D. O'Hagan, Chem.
Commun. 2011, 47, 8265–8267; b) A. J. Durie, A. M. Z. Slawin, T. Lebl,
P. Kirsch, D. O'Hagan, Chem. Commun. 2012, 48, 9643–9645; c) N. S.
Keddie, A. M. Z. Slawin, T. Lebl, D. Philp, D. O'Hagan, Nat. Chem. 2015,
7, 483–488; d) Z. Fang, N. Al-Maharik, A. M. Z. Slawin, M. Bühl, D.
O'Hagan, Chem. Commun. 2016, 52, 5116–5119; e) N. Aiguabella, M.
C. Holland, R. Gilmour, Org. Biomol. Chem. 2016, 14, 5534–5538; f) I.
G. Molnár, R. Gilmour, J. Am. Chem. Soc. 2016, 138, 5004–5007; g) M.
5
This article is protected by copyright. All rights reserved.