tethered aryl group with the bacterial ribosome is responsible
for the enhanced activities against the constitutively mac-
rolide-resistant organisms harboring the erm genes.
DMAP. The treatment of the resulting 9,2′,4′′-triacetate 2
with reagent 3a in the presence of Pd (dba) (2 mol %) and
2
3
dppb (4 mol %) in refluxing THF smotthly facilitated a
tandem dialkylation at the 6,11-hydroxyl groups to provide
We focused on the synthesis of 6,11-O-bridged bicyclic
9
12
ketolides, reasoning that this bridge will improve the stability
the 6,11-O-bridged macrolide 4a in 85% yield. Further
of the parent compound by preventing intramolecular hemi-
study on the scope of this bridging process showed that a
trisubstituted olefin can also be used as the dielectrophile.
For example, by reacting compound 2 with 3b, 4b (E/Z
∼1/1) was produced in 72% yield with complete regiose-
lectivity where the oxygen nucleophiles attack at the least
substituted position of the Pd-π-allyl complex.
10
ketal formation and increase the rigidity of the ketolide
conformation, as well as provide an ideal point for aryl group
attachment.
Using allylic bis(tert-butyl carbonate) 3a as a dielectro-
1
1
phile, we developed a novel bridging process for EryA-
derived macrolide via a palladium-catalyzed tandem inter-
and intramolecular 6-O,11-O-dialkylation (Scheme 1). Thus,
The cladinose sugar and 9-oxime acetate were selectively
hydrolyzed by treating 4a with 2 M HCl in ethanol at 65 °C
for 2 h to give oxime intermediate 5. Reduction of the
13
9
-oxime with TiCl
3
gave 9-imine 6. Surprisingly, the imine
group of 6 is very stable and cannot be hydrolyzed to the
corresponding 9-ketone compound under various conditions.
We believe that the stability of the imine group is due to the
constrained conformation and the lack of intramolecular
assistance for the hydrolysis. Thus, acetylation of 6, followed
by Dess-Martin oxidation of 3-OH in dichloromethane and
deprotection of 2′-acetate in methanol, gave the bridged
ketolide 7 in 85% yield over three steps. Treatment of
compound 5 with MOMCl and NaH in DMF provided a
MOM-protected oxime intermediate, which upon Dess-
Martin oxidation of the 3-OH group and the subsequent
Scheme 1. Synthesis of 6,11-O-Bridged Bicyclic Macrolides
2
′-acetyl deprotection gave the ketolide 8 (Scheme 2).
Scheme 2. Synthesis of 6,11-O-Bridged Ketolide
commercially available EryA oxime 1 was converted to its
,2′,4′′-triacetate by reacting it with acetic anhydride in THF
in the presence of triethylamine and a catalytic amount of
9
(4) (a) Agouridas, C.; Benedetti, Y.; Le Martret, O.; Chantot, J.-F. 35th
Interscience Conference on Antimicrobial Agents and Chemtherapy, San
Francisco, CA, 1995; Abstract No. F157. (b) Agouridas, C.; Denis, A.;
Augar, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.;
Dussarat, A.; Fromentin, C.; D’Ambrieres, S. G.; Lachaud, S.; Laurin, P.;
Le Martret, O.; Loyau, V.; Tessot, N. J. Med. Chem. 1998, 41, 4080-
4
100.
5) (a) Ma, Z.; Clark, R. F.; Wang, S.; Nilius, A. M.; Flamm, R. K.; Or,
(
Y. S. 39th Interscience Conference on Antimicrobial Agents and Chem-
therapy, San Francisco, CA, 1999; Abstract No. F2113. (b) Or, Y. S.; Clark,
R. F.; Wang, S.; Chu, D. T. W.; Nilius, A. M.; Flamm, R. K.; Mitten, M.;
Ewing, P.; Alder, J.; Ma, Z. J. Med. Chem. 2000, 43, 1045-1049. (c) Ma,
Z.; Clark, R. F.; Brazzale, A.; Wang, S.; Rupp, M. J.; Li, L.; Griesgraber,
G.; Zhang, S.; Yong, H.; Phan, L. T.; Nemoto, P. A.; Chu, D. T. W.; Plattner,
J. J.; Zhang, X.; Zhong, P.; Cao, Z.; Nilius, A. M.; Shortridge, V. D.; Flamm,
R.; Mitten, M.; Meulbroek, J.; Ewing, P.; Alder, J.; Or, Y. S. J. Med. Chem.
2
001, 44, 4137-4156. (c) Keyes, R. F.; Carter, J. J.; Englund, E. E.; Daly,
M. M.; Stone, G. G.; Nilius, A. M.; Ma, Z. J. Med. Chem. 2003, 46, 1795-
798.
6) Denis, A.; Agouridas, C.; Auger, J.-M.; Benedetti, Y.; Bonnefoy,
1
(
A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; D’Ambrieres, S.
D.; Lachaud, S.; Laurin, P.; Le Martret, O. Loyau, V.; Tessot, N.; Pejac,
J.-M.; Perron, S. Bioorg. Med. Chem. Lett. 1999, 9, 3075-3080.
(
7) (a) Allen, N. E. Antimicrob. Agents Chemother. 1977, 11, 669-674.
(
b) Pestka, S.; Vince, R.; LeMahieu, R.; Weiss, F.; Fern, L.; Unowsky, J.
Antimicrob. Agents Chemother. 1976, 9, 128-130.
4456
Org. Lett., Vol. 6, No. 24, 2004