S. M. Landge et al. / Tetrahedron Letters 48 (2007) 6372–6376
6375
ants, I. L., Yacobson, G. G., Eds.; Springer: New York,
1985.
The isolation of TFAc was carried out using 3 mmol
TFAE and 2 ml of concd H2SO4. The mixture was irra-
diated at a specified temperature (90 and 150 °C) for
5 min each. The colorless gas produced was passed
through drying agent and condensed directly into an
NMR tube at À78 °C. The isolated TFAc was immedi-
ately mixed with CDCl3, and sealed under N2 flow.
5. (a) Jeong, I.; Kim, Y.; Cho, K.; Kim, K. Bull. Korean
Chem. Soc. 1991, 12, 125; (b) Ogoshi, H.; Toi, H.;
Aoyama, Y. J. Org. Chem. 1986, 51, 2366; (c) Mikami,
K.; Yajima, T.; Terada, M.; Uchimaru, T. Tetrahedron
Lett. 1993, 34, 7591; (d) Nagai, T.; Nishioka, G.; Koyama,
M.; Ando, A.; Miki, T.; Kumadaki, I. Chem. Pharm. Bull.
1991, 39, 233.
6. (a) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004,
104, 1; (b) Ramachandran, P. V.; Padiya, K. J.; Rauniyar,
V.; Reddy, M. V. R.; Brown, H. C. Tetrahedron Lett.
2004, 45, 1015; (c) Torri, H.; Nakadai, M.; Ishihara, K.;
Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43,
1983; (d) Enders, D.; Funabiki, K. Org. Lett. 2001, 3,
1575.
7. (a) Fuchigami, T.; Ichikawa, S. J. Org. Chem. 1994, 59,
607; (b) Fuchigami, T.; Ichikawa, S.; Konno, A. Chem.
Lett. 1989, 1987; (c) Uneyama, K.; Momota, M.; Hayash-
ida, K.; Itoh, T. J. Org. Chem. 1990, 55, 5364; (d)
Imperiali, B.; Abeles, R. H. Tetrahedron Lett. 1986, 27,
135; (e) Husted, D. H.; Ahlbrecht, A. H. J. Am. Chem.
Soc. 1952, 74, 5422.
8. (a) Maki, Y.; Kimoto, H.; Fujii, S. J. Fluorine Chem. 1988,
39, 47; (b) Guy, A.; Lobgeois, A.; Lemaire, M. J. Fluorine
Chem. 1986, 32, 361; (c) Funabiki, K.; Nagaya, H.;
Ishihara, M.; Matsui, M. Tetrahedron 2006, 62, 5049; (d)
Gong, Y.; Kato, K. J. Fluorine Chem. 2001, 108, 83; (e)
Gong, Y.; Kato, K.; Kimoto, H. Bull. Chem. Soc. Jpn.
2001, 74, 377; (f) Gong, Y.; Kato, K.; Kimoto, H. Bull.
Chem. Soc. Jpn. 2000, 73, 249; (g) Gong, Y.; Kato, K.;
Kimoto, H. J. Heterocycl. Chem. 2001, 38, 25; (h)
Funabiki, K.; Hasegawa, K.; Murase, Y.; Nagaya, H.;
Matsui, M. J. Fluorine Chem. 2006, 127, 545; (i) Loh, T.-
P.; Li, X.-R. Chem. Commun. 1996, 1929; (j) Gong, Y.;
Kato, K. Tetrahedron: Asymmetry 2001, 12, 2121.
9. Kato, K.; Katayama, M.; Gautam, R. K.; Fujii, S.;
Kimoto, H. Bio. Biotech. Biochem. 1995, 59, 271.
10. Golding, B. T.; Sellars, P. J.; Watson, W. P. J. Fluorine
Chem. 1985, 30, 153.
1
NMR spectra were recorded without delay. H NMR
(300.126 MHz, CDCl3), d (ppm) 9.39 (q, JH–F
=
3.0 Hz, 1H, CH). 19F NMR(282.401 MHz, CFCl3), d
(ppm) À81.79 (d, JF–H = 3.1 Hz, 3F, CF3).
4.2. Reaction of nucleophiles with TFAc—general
procedure
In a typical reaction, a nucleophile (1 mmol) and 1 ml of
solvent were placed into a 10 ml round-bottomed flask
equipped with a magnetic stirring bar. The TFAc gas
produced was passed into the vessel and was further stir-
red for 15 min. All reactions were carried out under
nitrogen flow. The progress of the reaction was moni-
tored by GC–MS. When the reaction was completed,
the product was dissolved in CH2Cl2 and passed
through a short silica column. The crude products were
purified by flash chromatography.
Acknowledgment
Financial support provided by University of Massachu-
setts Boston and NIH (R-15 AG025777-02) is gratefully
acknowledged.
11. Hooper, D. G.; Loucks, L. F.; Liu, M. T. H. J. Chem.
Educ. 1975, 2, 131.
References and notes
12. (a) Pierce, O. R.; Kane, T. G. J. Am. Chem. Soc. 1954, 76,
300; (b) Lee, S. A. Eur. Pat. EP 516311, 1992 (Chem.
Abstr. 1993, 118, 80496).
13. Siegemung, G. Ger. Pat. DE 2139211, 1973 (Chem. Abstr.
1973, 78, 110577 m).
14. Shirai, K.; Onomura, O.; Maki, T.; Matsumura, Y.
Tetrahedron Lett. 2000, 41, 5873.
15. Shechter, H.; Conrad, F. J. Am. Chem. Soc. 1950, 72,
3371.
16. Brown, F.; Musgrave, W. K. R. J. Chem. Soc. 1952,
5049.
17. Ferreo, R. M.; Jacquot, R. Eur. Pat. EP 539274, 1993
(Chem. Abstr. 1993, 119, 138494).
18. (a) Loupy, A. Microwaves in Organic Synthesis, 2nd ed.;
Wiley–VCH: Weinheim, 2006; (b) Kappe, C. O.; Stadler,
A. Microwaves in Organic and Medicinal Chemistry;
Wiley–VCH: Weinheim, 2005; (c) Tierney, J. P.; Lidstrom,
P. Microwave Assisted Organic Synthesis; Blackwell:
Oxford, 2005.
19. (a) Abid, M.; Landge, S. M.; To¨ro¨k, B. Org. Prep. Proc.
Int. 2006, 38, 495; (b) Abid, M.; Spaeth, A.; To¨ro¨k, B.
Adv. Synth. Catal. 2006, 348, 2191; (c) Landge, S. M.;
Schmidt, A.; Outerbridge, V.; To¨ro¨k, B. Synlett 2007,
1600; (d) Landge, S. M.; Atanassova, V.; Thimmaiah, M.;
To¨ro¨k, B. Tetrahedron Lett. 2007, 48, 5161.
1. (a) Olah, G. A.; Chambers, R. D.; Prakash, G. K S.
Synthetic Fluorine Chemistry; Wiley: New York, 1992; (b)
Biomedical Frontiers of Fluorine Chemistry; Ojima, I.,
McCarthy, J. R., Welch, J. T., Eds.; American Chemical
Society: Washington, DC, 1996; (c) Enantiocontrolled
Synthesis of Fluoroorganic Compounds: Stereochemical
Challenges and Biomedicinal Targets; Soloshonok, V. A.,
Ed.; Wiley: New York, 1999; (d) Asymmetric Fluoroor-
ganic Chemistry; Ramachandran, P. V., Ed.; ACS Symp.
Series; ACS: Washington, DC, 2000; (e) Organofluorine
Compounds; Hiyama, T., Ed.; Springer: Berlin, 2001; (f)
Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications; Wiley: New York, 2004; (g)
Fluorine-containing Synthons; Soloshonok, V. A., Ed.
ACS Symposium Series; ACS: Washington, DC, 2005.
2. (a) Gong, Y.; Kato, K. Curr. Org. Chem. 2004, 8, 1659; (b)
Begue, J.-P.; Bonnet-Delpon, D.; Crousse, B.; Legros, J.
Chem. Soc. Rev. 2005, 34, 562; (c) Langlois, B. R.; Billard,
T. Synthesis 2003, 185; (d) Kitazume, T.; Yamazaki, T.
Experimental Methods in Organic Fluorine Chemistry;
Kodansha, Gordon and Breach Science Publishers:
Tokyo, 1998; (e) Preparation, Properties and Industrial
Applications of Organofluorine Compound; Banks, R. E.,
Ed.; Ellis Horwood: Chichester, 1982.
3. Swinson, J. Chem. Today 2005, 23, 14.
4. (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1990, 29,
1325; (b) Synthesis of Fluoroorganic Compounds; Knuy-
20. (a) To¨ro¨k, B.; Prakash, G. K. S. Adv. Synth. Catal. 2003,
345, 165; (b) Abid, M.; To¨ro¨k, B. Adv. Synth. Catal. 2005,