Journal of the American Chemical Society
ARTICLE
to catalyze this reaction even better than heme. This chemical
pathway is similar to the enzymatic pathways classically consid-
ered. Using an off-line approach, we have shown that cupric
ions in the presence of hydrogen peroxide can promote tyrosine
nitration through promotion of the production of tyrosine
radicals by nitric oxide. This study shows that cupric ions play
a polyvalent role as Fenton catalysts to efficiently catalyze the
(15) Reddy, P. V. B.; Rao, K. V. R.; Norenberg, M. D. Lab. Invest.
2008, 88, 816–830.
(16) Thomas, D. D.; Espey, M. G.; Vitek, M. P.; Miranda, K. M.;
Wink, D. A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 12691–12696.
(17) Perry, G.; Sayre, L. M.; Atwood, C. S.; Castellani, R. J.; Cash,
A. D.; Rottkamp, C. A.; Smith, M. A. CNS Drugs 2002, 16, 339–352.
(18) Waggoner, D. J.; Bartnikas, T. B.; Gitlin, J. D. Neurobiol. Dis.
1999, 6, 221–230.
(19) Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Chem.
Rev. (Washington, DC, U. S.) 2006, 106, 1995–2044.
(20) Lu, Y.; Prudent, M.; Qiao, L. A.; Mendez, M. A.; Girault, H. H.
Metallomics 2010, 2, 474–479.
•
production of •OH/Cu2+À OH radicals. The radicals are them-
selves involved in many reactions. The major conclusion of this
work is that micromolar concentrations of copper catalyze the
nitration process by •NO oxidation, while millimolar concentra-
tions catalyze the nitration process by nitrite oxidation.
(21) Goss, S. P. A.; Singh, R. J.; Kalyanaraman, B. J. Biol. Chem. 1999,
274, 28233–28239.
(22) Singh, R. J.; Goss, S. P. A.; Joseph, J.; Kalyanaraman, B. Proc.
Natl. Acad. Sci. U.S.A. 1998, 95, 12912–12917.
’ ASSOCIATED CONTENT
(23) Zhang, H.; Joseph, J.; Felix, C.; Kalyanaraman, B. J. Biol. Chem.
2000, 275, 14038–14045.
(24) Bonini, M. G.; Fernandes, D. C.; Augusto, O. Biochemistry
2004, 43, 344–351.
(25) Sevcsik, E.; Trexler, A. J.; Dunn, J. M.; Rhoades, E. J. Am. Chem.
Soc. 2011, 133, 7152–7158.
(26) Gobry, V.; van Oostrum, J.; Martinelli, M.; Rohner, T. C.;
Reymond, F.; Rossier, J. S.; Girault, H. H. Proteomics 2002, 2, 405–412.
(27) Bindila, L.; Froesch, M.; Lions, N.; Vukelic, Z.; Rossier, J. S.;
Girault, H. H.; Peter-Katalinic, J.; Zamfir, A. D. Rapid Commun. Mass
Spectrom. 2004, 18, 2913–2920.
S
Supporting Information. Chemicals employed, micro-
b
chip fabrication, tandem MS characterization of various peptides,
nitration of different peptides, calibration curve for nitration level
quantification, and details about the characterization of hydroxyl
radical generated from copper(II) and H2O2. This material is
’ AUTHOR INFORMATION
Corresponding Author
hubert.girault@epfl.ch
(28) Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K.
Electrochem. Commun. 2000, 2, 207–210.
(29) Liu, J. F.; Roussel, C.; Lagger, G.; Tacchini, P.; Girault, H. H.
Anal. Chem. 2005, 77, 7687–7694.
(30) Morand, K.; Talbo, G.; Mann, M. Rapid Commun. Mass
Spectrom. 1993, 7, 738–743.
(31) Boys, B. L.; Kuprowski, M. C.; Noel, J. J.; Konermann, L. Anal.
Chem. 2009, 81, 4027–4034.
(32) Maragos, C. M.; Morley, D.; Wink, D. A.; Dunams, T. M.;
Saavedra, J. E.; Hoffman, A.; Bove, A. A.; Isaac, L.; Hrabie, J. A.; Keefer,
L. K. J. Med. Chem. 1991, 34, 3242–3247.
(33) Beckman, J. S.; Carson, M.; Smith, C. D.; Koppenol, W. H.
Nature 1993, 364, 584–584.
(34) Beckman, J. S.; Ischiropoulos, H.; Zhu, L.; Vanderwoerd, M.;
Smith, C.; Chen, J.; Harrison, J.; Martin, J. C.; Tsai, M. Arch. Biochem.
Biophys. 1992, 298, 438–445.
’ ACKNOWLEDGMENT
We thank the Swiss National Science Foundation for support-
ing the project “Analytical tools for proteome analysis and
redoxomics (200020-127142)” and NSFC 20925517. B.L. is
grateful to EPFL for a visiting professor fellowship. We thank
Laboratoire de neurobiologie molꢀeculaire et neuroprotꢀeomique
of Ecole Polytechnique Fꢀedꢀerale de Lausanne for the synthesis of
human α-synuclein (107-140) peptide.
’ REFERENCES
(35) Ramezanian, M. S.; Padmaja, S.; Koppenol, W. H. Chem. Res.
Toxicol. 1996, 9, 232–240.
(36) Roncone, R.; Barbieri, M.; Monzani, E.; Casella, L. Coord.
Chem. Rev. 2006, 250, 1286–1293.
(37) Monzani, E.; Roncone, R.; Galliano, M.; Koppenol, W. H.;
(1) Wiseman, H.; Halliwell, B. Biochem. J. 1996, 313, 17–29.
(2) Apel, K.; Hirt, H. Annu. Rev. Plant Biol. 2004, 55, 373–399.
(3) Radi, R. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4003–4008.
(4) Shishehbor, M. H.; Aviles, R. J.; Brennan, M. L.; Fu, X. M.;
Goormastic, M.; Pearce, G. L.; Gokce, N.; Keaney, J. F.; Penn, M. S.;
Sprecher, D. L.; Vita, J. A.; Hazen, S. L. JAMA, J. Am. Med. Assoc. 2003,
289, 1675–1680.
(5) Good, P. F.; Werner, P.; Hsu, A.; Olanow, C. W.; Perl, D. P. Am.
J. Pathol. 1996, 149, 21–28.
(6) Danielson, S. R.; Held, J. M.; Schilling, B.; Oo, M.; Gibson, B. W.;
Andersen, J. K. Anal. Chem. 2009, 81, 7823–7828.
(7) Gunaydin, H.; Houk, K. N. Chem. Res. Toxicol. 2009, 22,
894–898.
(8) van der Vliet, A.; Eiserich, J. P.; Halliwell, B.; Cross, C. E. J. Biol.
Chem. 1997, 272, 7617–7625.
(9) Goldstein, S.; Lind, J.; Merenyi, G. Chem. Rev. (Washington, DC,
U. S.) 2005, 105, 2457–2470.
(10) Schopfer, M. P.; Wang, J.; Karlin, K. D. Inorg. Chem. 2010,
49, 6267–6282.
Casella, L. Eur. J. Biochem. 2004, 271, 895–906.
(38) Nicolis, S.; Pennati, A.; Perani, E.; Monzani, E.; Sanangelantoni,
A. M.; Casella, L. Chem.-Eur. J. 2006, 12, 749–757.
(39) Nicolis, S.; Monzani, E.; Roncone, R.; Gianelli, L.; Casella, L.
Chem.-Eur. J. 2004, 10, 2281–2290.
(40) Ferrer-Sueta, G.; Radi, R. ACS Chem. Biol. 2009, 4, 161–177.
(41) Yamakura, F.; Ikeda, K. Nitric Oxide 2006, 14, 152–161.
(42) Augusto, O.; Bonini, M. G.; Amanso, A. M.; Linares, E.; Santos,
C. C. X.; De Menezes, S. L. Free Radical Biol. Med. 2002, 32, 841–859.
(43) Ferrer-Sueta, G.; Ruiz-Ramirez, L.; Radi, R. Chem. Res. Toxicol.
1997, 10, 1338–1344.
(44) Kohnen, S.; Halusiak, E.; Mouithys-Mickalad, A.; Deby-
Dupont, G.; Deby, C.; Hans, P.; Lamy, M.; Noels, A. F. Nitric Oxide
2005, 12, 252–260.
(45) Babich, O. A.;Gould, E. S. Res. Chem. Intermed. 2002, 28, 575–583.
(46) Geletti, Y. V.; Bailey, A. J.; Boring, E. A.; Hill, C. L. Chem.
Commun. (Cambridge, U. K.) 2001, 1484–1485.
(47) Park, G. Y.; Deepalatha, S.; Puiu, S. C.; Lee, D.-H.; Mondal, B.;
Sarjeant, A. A. N.; del Rio, D.; Pau, M. Y. M.; Solomon, E. I.; Karlin, K. D.
J. Biol. Inorg. Chem. 2009, 14, 1301–1311.
(11) Surmeli, N. B.; Litterman, N. K.; Miller, A. F.; Groves, J. T.
J. Am. Chem. Soc. 2010, 132, 17174–17185.
(12) Olbregts, J. Int. J. Chem. Kinet. 1985, 17, 835–848.
(13) Su, J.; Groves, J. T. J. Am. Chem. Soc. 2009, 131, 12979–12988.
(14) Bian, K.; Gao, Z. H.; Weisbrodt, N.; Murad, F. Proc. Natl. Acad.
Sci. U.S.A. 2003, 100, 5712–5717.
19830
dx.doi.org/10.1021/ja206980q |J. Am. Chem. Soc. 2011, 133, 19823–19831