Organic Letters
Letter
six 3° centers) illustrates that substrate- and catalyst-controlled
selectivity can combine to make this a useful method for late-
stage functionalization.
2014, 16, 6504−6507. (c) Adams, A. M.; Du Bois, J. Chem. Sci. 2014,
5
, 656. (d) Litvinas, N. D.; Brodsky, B. H.; Du Bois, J. Angew. Chem.,
Int. Ed. 2009, 48, 4513−4516. (e) Brodsky, B. H.; Du Bois, J. J. Am.
Chem. Soc. 2005, 127, 15391−15393.
In summary, we have demonstrated that ketone-catalyzed
C−H hydroxylation can be achieved using a combination of
Oxone and an aqueous fluoro alcohol solvent system. The
substrate scope achieved using this catalytic protocol rivals that
observed using typical stoichiometric or superstoichiometric
dioxirane protocols, which can require large excesses of
difficult-to-handle reagents. Compared to our previously
reported method, the inclusion of acyclic substrates and
realization of 2° C−H bond oxidation greatly expand the
range of substrates amenable to ketone-catalyzed hydroxylation.
In addition, the mild reaction conditions at essentially neutral
pH and decreased temperature led to initial observations of
compatibility with sensitive functionality. More importantly,
this catalytic protocol overcomes a significant limitation in
dioxirane chemistry that had previously prevented the develop-
ment of ketone catalysts to address issues of stereoselectivity,
regioselectivity, and chemoselectivity in intermolecular C−H
oxidation. Future efforts will focus on catalyst design to address
these limitations and to further expand the utility of
organocatalytic aliphatic oxidations in synthesis.
(
(
5) Curci, R.; D’Accolti, L.; Fusco, C. Acc. Chem. Res. 2006, 39, 1−9.
6) For selected recent examples, see: (a) Kawamura, S.; Chu, H.;
Felding, J.; Baran, P. S. Nature 2016, 532, 90−93. (b) Michaudel, Q.;
Journot, G.; Regueiro-Ren, A.; Goswami, A.; Guo, Z.; Tully, T. P.;
Zou, L.; Ramabhadran, R. O.; Houk, K. N.; Baran, P. S. Angew. Chem.,
Int. Ed. 2014, 53, 12091−12096. (c) Wender, P. A.; Hilinski, M. K.;
Mayweg, A. V. W. Org. Lett. 2005, 7, 79−82.
(7) (a) Mikula, H.; Svatunek, D.; Lumpi, D.; Glo
Hametner, C.; Frohlich, J. Org. Process Res. Dev. 2013, 17, 313−316.
b) Adam, W.; van Barneveld, C.; Golsch, D. Tetrahedron 1996, 52,
377−2384.
8) Zou, L.; Paton, R. S.; Eschenmoser, A.; Newhouse, T. R.; Baran,
̈
cklhofer, F.;
̈
(
2
(
P. S.; Houk, K. N. J. Org. Chem. 2013, 78, 4037−4048.
(9) MacMillan, D. W. C. Nature 2008, 455, 304−308.
(10) Wong, O. A.; Shi, Y. Chem. Rev. 2008, 108, 3958−3987.
(11) Yang, D.; Wong, M. K.; Wang, X. C. J. Am. Chem. Soc. 1998,
120, 6611−6612.
(12) Yang, D.; Wong, M.-K.; Yip, Y.-C. J. Org. Chem. 1995, 60,
3887−3889.
(13) Denmark, S. E.; Forbes, D. C.; Hays, D. S.; DePue, J. S.; Wilde,
R. G. J. Org. Chem. 1995, 60, 1391−1407.
(
(
14) Du, X.; Houk, K. N. J. Org. Chem. 1998, 63, 6480−6483.
15) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. J. Am. Chem. Soc.
ASSOCIATED CONTENT
Supporting Information
■
1
(
989, 111, 6749−6757.
17) Fung, Y.-S.; Yan, S.-C.; Wong, M.-K. Org. Biomol. Chem. 2012,
0, 3122−3129.
18) The product of remote hydroxylation was generated in only
*
S
(
1
(
data for all hydroxylation products (PDF)
trace amounts. The reported ratio is a calculated minimum selectivity
based on isolated amounts of product 8 and unreacted starting
material.
(
19) Colomer, I.; Batchelor-McAuley, C.; Odell, B.; Donohoe, T. J. J.
(21) Attempted hydroxylation of 33 using either benzoxathiazine or
AUTHOR INFORMATION
■
(
*
ORCID
Notes
(22) Recycling recovered starting material one time allowed for an
increase in the initial yield of 33% to 44%.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Acknowledgment is made to the donors of the American
Chemical Society Petroleum Research Fund for support of this
research.
REFERENCES
■
(
(
1) White, M. C. Science 2012, 335, 807−809.
2) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50,
3
(
362−3374.
3) For selected recent reports, see: (a) Milan, M.; Bietti, M.; Costas,
M. ACS Cent. Sci. 2017, 3, 196−204. (b) Font, D.; Canta, M.; Milan,
M.; Cusso, O.; Ribas, X.; Klein Gebbink, R. J. M.; Costas, M. Angew.
́
Chem., Int. Ed. 2016, 55, 5776−5779. (c) Howell, J. M.; Feng, K.;
Clark, J. R.; Trzepkowski, L. J.; White, M. C. J. Am. Chem. Soc. 2015,
1
2
2
37, 14590−14593. (d) Lee, M.; Sanford, M. S. J. Am. Chem. Soc.
015, 137, 12796−12799. (e) Oloo, W. N.; Que, L. Acc. Chem. Res.
015, 48, 2612−2621. (f) Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun,
W. Org. Lett. 2014, 16, 1108−1111. (g) Gormisky, P. E.; White, M. C.
J. Am. Chem. Soc. 2013, 135, 14052−14055. (h) McNeill, E.; Du Bois,
J. Chem. Sci. 2012, 3, 1810−1813.
(
4) (a) Wang, D.; Shuler, W. G.; Pierce, C. J.; Hilinski, M. K. Org.
Lett. 2016, 18, 3826−3829. (b) Pierce, C. J.; Hilinski, M. K. Org. Lett.
D
Org. Lett. XXXX, XXX, XXX−XXX