First author et al.
Report
variant length ethylene glycol spacers, which assembled into hex-
agonal columnar mesophases. Although the columnar dimensions
underwent a significant increase with the elongation of the flexible
spacers, the number of monomer units per column stratum (μ) ap-
peared to be around 7 for the whole polymers. Such an almost con-
stant μ value irrespective of the spacer length facilitated the inter-
action (or electronic coupling) between adjacent CS moieties to be
controlled by the spacer length. The fluorescence emission dis-
played a gradual blue-shift from cyan to blue with an increase of
the spacer length from 0 to 4 ethylene glycol subunits. The study
provides an efficient strategy to get better understanding towards
the influence of spacer lengths in liquid-crystalline polymers, and
contributes to the design and development of novel functional pol-
ymer materials.
liquid-crystalline polymer semiconducting materials with high charge-
carrier mobility via rational macromolecular engineering. Polym. Chem.
2017, 8, 3286-3293.
Zhu, Y.-F.; Guan, X.-L.; Shen, Z.; Fan, X.-H.; Zhou, Q.-F. Competition and
Promotion between Two Different Liquid-Crystalline Building Blocks:
Mesogen-Jacketed Liquid-Crystalline Polymers and Triphenylene
Discotic Liquid Crystals. Macromolecules 2012, 45, 3346-3355.
Yu, Z.-Q.; Lam, J. W. Y.; Zhao, K.; Zhu, C.-Z.; Yang, S.; Lin, J.-S.; Li, B. S.;
Liu, J.-H.; Chen, E.-Q.; Tang, B. Z. Mesogen jacketed liquid crystalline
polyacetylene containing triphenylene discogen: synthesis and phase
structure. Polym. Chem. 2013, 4, 996-1005.
Zhou, Q. F.; Li, H. M.; Feng, X. D. Synthesis of liquid-crystalline poly-
acrylates with laterally substituted mesogens. Macromolecules 1987,
20, 233-234.
Chen, X.-F.; Shen, Z.; Wan, X.-H.; Fan, X.-H.; Chen, E.-Q.; Ma, Y.; Zhou,
Q.-F. Mesogen-jacketed liquid crystalline polymers. Chem. Soc. Rev.
2010, 39, 3072-3101.
Supporting Information
Rosen, B. M.; Wilson, C. J.; Wilson, D. A.; Peterca, M.; Imam, M. R.;
Percec, V. Dendron-Mediated Self-Assembly, Disassembly, and Self-
Organization of Complex Systems. Chem. Rev. 2009, 109, 6275-6540.
Sun, H.-J.; Zhang, S.; Percec, V. From structure to function via complex
supramolecular dendrimer systems. Chem. Soc. Rev. 2015, 44, 3900-
3923.
Zheng, J.-F.; Liu, X.; Chen, X.-F.; Ren, X.-K.; Yang, S.; Chen, E.-Q. Hemi-
phasmidic Side-Chain Liquid Crystalline Polymer: From Smectic C
Phase to Columnar Phase with a Bundle of Chains as Its Building Block.
ACS Macro Lett. 2012, 1, 641-645.
Liu, X.-Q.; Wang, J.; Yang, S.; Chen, E.-Q. Self-Organized Columnar
Phase of Side-Chain Liquid Crystalline Polymers: To Precisely Control
the Number of Chains Bundled in a Supramolecular Column. ACS
Macro Lett. 2014, 3, 834-838.
Xu, Y.-S.; Shi, D.; Gu, J.; Lei, Z.; Xie, H.-L.; Zhao, T.-P.; Yang, S.; Chen, E.-
Q. Synthesis and self-organization of azobenzene containing hemi-
phasmidic side-chain liquid-crystalline polymers with different spacer
lengths. Polym. Chem. 2016, 7, 462-473.
The supporting information for this article is available on the
Acknowledgement
This work was supported by the National Natural Science Foun-
dation of China (21805228, 22022107 and 22071197), China Post-
doctoral Science Foundation (2018M633563) and Natural Science
Basic Research Plan in Shaanxi Province of China (2020JC-20). We
would also like to thank the Analytical & Testing Center of North-
western Polytechnical University for DSC measurement.
References
Woehrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum, N.; Lit-
terscheidt, J.; Haenle, J. C.; Staffeld, P.; Baro, A.; Giesselmann, F.;
Laschat, S. Discotic Liquid Crystals. Chem. Rev. 2016, 116, 1139-1241.
Sergeyev, S.; Pisula, W.; Geerts, Y. H. Discotic Liquid Crystals: A New
Generation of Organic Semiconductors. Chem. Soc. Rev. 2007, 36,
1902-1929.
Lin, C.; Ringsdorf, H.; Ebert, M.; Kleppinger, R.; Wendorff, J. H. Struc-
tural variations of liquid crystalline polymers with phasmidic-type
mesogens. Liq. Cryst. 1989, 5, 1841-1847.
Percec, V.; Heck, J.; Ungar, G. Liquid-crystalline polymers containing
mesogenic units based on half-disk and rodlike moieties. 5. Side-chain
liquid-crystalline poly(methylsiloxanes) containing hemiphasmidic
mesogens based on 4-[[3,4,5,-tris(alkan-1-yloxy)benzoyl]oxy]-4'-[[p-
(propan-1-yloxy)benzoyl]oxy]biphenyl groups. Macromolecules 1991,
24, 4957-4962.
Percec, V.; Heck, J. Liquid crystalline polymers containing mesogenic
units based on half-disc and rod-like moieties. I. Synthesis and charac-
terization of 4-(11-undecan-1-yloxy)-4 ′ -[3,4,5-tri(p-n-dodecan-1-
yloxybenzyloxy)benzoate]biphenyl side groups. J. Polym. Sci. Part A:
Polym. Chem. 1991, 29, 591-597.
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggre-
gation-Induced Emission: Together We Shine, United We Soar! Chem.
Rev. 2015, 115, 11718-11940.
Zhao, Z.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emis-
sion: New Vistas at the Aggregate Level. Angew. Chem. Int. Ed. 2020,
50, 9888-9907.
Wu, J.; Pisula, W.; Müllen, K. Graphenes as Potential Material for Elec-
tronics. Chem. Rev. 2007, 107, 718-747.
Kato, T.; Yoshio, M.; Ichikawa, T.; Soberats, B.; Ohno, H.; Funahashi, M.
Transport of ions and electrons in nanostructured liquid crystals. Na-
ture Rev. Mater. 2017, 2, 17001.
Zhao, R.; Zhao, T.; Jiang, X.; Liu, X.; Shi, D.; Liu, C.; Yang, S.; Chen, E.-Q.
Thermoplastic High Strain Multishape Memory Polymer: Side-Chain
Polynorbornene with Columnar Liquid Crystalline Phase. Adv. Mater.
2017, 29, 1605908.
Fleischmann, E.-K.; Zentel, R. Liquid-Crystalline Ordering as a Concept
in Materials Science: From Semiconductors to Stimuli-Responsive De-
vices. Angew. Chem. Int. Ed. 2013, 52, 8810-8827.
Tschierske, C. Development of Structural Complexity by Liquid-Crystal
Self-assembly. Angew. Chem. Int. Ed. 2013, 52, 8828-8878.
Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional Liquid Crys-
tals towards the Next Generation of Materials. Angew. Chem. Int. Ed.
2018, 57, 4355-4371.
Zhu, Y.; Zheng, M.; Tu, Y.; Chen, X.-F. Supramolecular Fluorescent Pol-
ymers Containing α-Cyanostilbene-Based Stereoisomers: Z/E-Isomeri-
zation Induced Multiple Reversible Switching. Macromolecules 2018,
51, 3487-3496.
Wu, Y.; Zhang, S.; Pei, J.; Chen, X.-F. Photochromic fluorescence switch-
ing in liquid crystalline polynorbornenes with α-cyanostilbene side-
chains. J. Mater. Chem. C 2020, 8, 6461-6469.
Yang, M.; Liu, Z.; Li, X.; Yuan, Y.; Zhang, H. Influence of flexible spacer
length on self-organization behaviors and photophysical properties of
hemiphasmidic liquid crystalline polymers containing cyanostilbene.
Euro. Polym. J. 2020, 123, 109459.
Bisoyi, H. K.; Li, Q. Stimuli Directed Alignment of Self-Organized One-
Dimensional Semiconducting Columnar Liquid Crystal Nanostructures
for Organic Electronics. Prog. Mater. Sci. 2019, 104, 1-52.
Kumar, S. Chemistry of Discotic Liquid Crystals: From Monomers to Pol-
ymers; CRC: Boca Raton, FL, 2010.
Mu, B.; Wu, B.; Pan, S.; Fang, J.; Chen, D. Hierarchical Self-Organization
and Uniaxial Alignment of Well Synthesized Side-Chain Discotic Liquid
Crystalline Polymers. Macromolecules 2015, 48, 2388-2398.
Mu, B.; Pan, S.; Bian, H.; Wu, B.; Fang, J.; Chen, D. Well-Organized Co-
lumnar Superlattices via Positive Coupling between Polymer Backbone
and Discotic Side Groups. Macromolecules 2015, 48, 6768-6780.
Mu, B.; Hao, X.; Chen, J.; Li, Q.; Zhang, C.; Chen, D. Discotic columnar
Yuan, Y.; Li, J.; He, L.; Liu, Y.; Zhang, H. Preparation and properties of
© 2021 SIOC, CAS, Shanghai, & WILEY-VCH GmbH
Chin. J. Chem. 2021, 39, XXX-XXX