C O M M U N I C A T I O N S
Table 1. Metrical Parameters and Resonance Raman Frequencies for MNNM Cores
N2
L2Fe2N2a
L2Co2N2
L2Ni2N2c
Na2L2Fe2N2b
Na2L2Co2N2
K2L2Fe2N2b
K2L2Co2N2
K2L2Ni2N2c
M-N (Å)
N-N (Å)
νN-N (cm-1
N/A 1.770(4),1.772(4) 1.8401(8) 1.836(3), 1.830(3) 1.749(3), 1.746(3) 1.743(7), 1.735(6) 1.773(7), 1.761(7) 1.750(1)
1.747(4)
1.185(8)
1.098 1.189(4)
1.139(2) 1.120(4)
2164 (2093)
1.213(4)
1583
1.211(3)
1598 (1542)
1.241(7)
1589 (1536)
1.220(2)
1599 (1545) 1696 (1642)
d
2331 1778 (1718)
e
)
a Rerefinement of the original data from ref 5a; see Supporting Information. b Reference 5a. c Reference 11. d Stretching frequencies of 15N2
isotopomers given in parentheses. e No isotope-sensitive Raman bands were observed with 514.5, 413.1, or 406.7 nm excitation.
their Fe analogues, with N-N distances of 1.21-1.22 Å (Table
1). These N-N distances are similar to the N-N double bond in
azobenzene of 1.24(2) Å.12 These are the longest N-N distances
in any cobalt dinitrogen complex, including tetrahedral examples.3
They are also significantly longer than the N-N bond in the nickel
analogue K2LNiNNNiL (1.185(8) Å).11 Resonance Raman spectra
(λex ) 406.7 nm) of the [LCoNNCoL]2- complexes in toluene
solution show bands below 1600 cm-1 that shift 50-60 cm-1 lower
in the 15N2 isotopomer. The very low N-N stretching frequency
confirms the crystallographically observed weakening of the N-N
bond. Thus, even though Co is less activating than Fe in LMNNML
species, it is as effective as Fe at weakening N2 in [LMNNML]2-
compounds. The short Co-N bonds of 1.73-1.75 Å suggest some
multiple bond character from π-backbonding.13
zerovalent compounds. In neutral LMNNML, Fe is significantly
better than Co at backbonding into the π* orbitals of N2. Reduction
of LCoNNCoL by two more electrons gives the first Co complex
with a significantly weakened N2 ligand, and this N-N bond
weakening is similar between the formally zerovalent complexes
(alkali)2[LMNNML] with Fe and Co. These results demonstrate
that the coordination geometry and presence of alkali metals can
have a major impact on the reduction level of bound N2, even with
a more poorly backbonding metal like cobalt.
Acknowledgment. The authors acknowledge a gift of 15N2 from
Cambridge Isotopes and financial support from the NIH (GM065313
to P.L.H., AI072719 to K.R.R.) and the NSF (CHE-0112658 to
P.L.H., CHE-0701247 to T.R.C.).
Is the N-N weakening in the Co2 dianions due to the additional
electron density at cobalt or from the influence of the alkali metal
cations? Because the alkali-metal-free dianions have not been
isolable, DFT calculations are used to elucidate the reasons for the
exceptional N-N bond weakening. Calculations use a simplified
ꢀ-diketiminate ligand (L′ ) C3N2H5-) with a pure functional and
an extended all-electron basis set, BPW91/6-311+G(d). The triplet
dianion [L′CoNNCoL′]2- optimizes to a Y-shape minimum with
Co-N ) 1.76 Å, N-N ) 1.19 Å, and νNN ) 1742 cm-1. This
shows that reduction alone gives significant N-N stretching, but
not as much as the observed compounds. Interestingly, geometry
optimization of triplet K2L′CoNNCoL′ gives a model that has
excellent agreement with the experimental metrical data, with Co-N
) 1.74 Å (expt 1.75), N-N ) 1.22 Å (expt 1.22), and νNN ) 1603
cm-1 (expt 1599). The presence of the potassium ions heightens
the electron transfer from Co to N2; Natural Bond Order (NBO)
analyses show that the N-N bond order changes from 2.05 to 1.82
upon incorporation of the K+ ions. Clearly, both reduction and alkali
metal binding work in concert to weaken N2, whereby the positively
charged alkali metal pulls electrons into N2.
Supporting Information Available: Synthetic, computational,
spectroscopic, and crystallographic details. This material is available
References
(1) MacKay, B. A.; Fryzuk, M. D. Chem. ReV. 2004, 104, 385–401.
(2) Tuczek, F.; Lehnert, N. Angew. Chem., Int. Ed. 1998, 37, 2636–2638. Note
that geometric “activation” and reactivity do not necessarily correlate. We
emphasize ground-state weakening here because it is more readily quanti-
fied. See also: Leigh, G. J. Acc. Chem. Res. 1992, 25, 177–181.
(3) Selected cobalt complexes: (a) Davis, B. R.; Payne, N. C.; Ibers, J. A.
Inorg. Chem. 1969, 8, 2719–2728. (b) Hammer, R.; Klein, H. F.; Schubert,
U.; Frank, A.; Huttner, G. Angew. Chem. 1976, 88, 648–649. (c) Yamamoto,
A.; Miura, Y.; Ito, T.; Chen, H. L.; Iri, K.; Ozawa, F.; Miki, K.; Sei, T.;
Tanaka, N.; Kasai, N. Organometallics 1983, 2, 1429–1436. (d) Jones,
R. A.; Stuart, A. L.; Atwood, J. L.; Hunter, W. E. Organometallics 1983,
2, 1437–1441. (e) Bianchini, C.; Peruzzini, M.; Zanobini, F. Organome-
tallics 1991, 10, 3415–3417. (f) Detrich, J. L.; Konecny, R.; Vetter, W. M.;
Doren, D.; Rheingold, A. L.; Theopold, K. H. J. Am. Chem. Soc. 1996,
118, 1703–1712. (g) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 10782–10783. (h) Scott, J.; Gambarotta, S.; Korobkov, I. Can. J. Chem.
2005, 83, 279–285. (i) Fout, A. R.; Basuli, F.; Fan, H.; Tomaszewski, J.;
Huffman, J. C.; Baik, M.-H.; Mindiola, D. J. Angew. Chem., Int. Ed. 2006,
45, 3291–3295.
(4) Freund, H. J.; Bartos, B.; Messmer, R. P.; Grunze, M.; Kuhlenbeck, H.;
Neumann, M. Surf. Sci. 1987, 185, 187–202.
Thus, iron and cobalt have different abilities to weaken N2 in
formally monovalent compounds and similar abilities in formally
(5) (a) Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-
Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123,
9222–9223. (b) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers,
K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.;
Holland, P. L. J. Am. Chem. Soc. 2006, 128, 756–769. (c) Stoian, S. A.;
Vela, J.; Smith, J. M.; Sadique, A. R.; Holland, P. L.; Mu¨nck, E.; Bominaar,
E. L. J. Am. Chem. Soc. 2006, 128, 10181–10192.
(6) Holland, P. L. Acc. Chem. Res. 2008, 41, 905–914.
(7) Chomitz, W. A.; Arnold, J. Chem. Commun. 2007, 4797–4799.
(8) Holland, P. L.; Cundari, T. R.; Perez, L. L.; Eckert, N. A.; Lachicotte,
R. J. J. Am. Chem. Soc. 2002, 124, 14416–14424.
(9) An iron-cobalt heterobimetallic dinitrogen complex LFeNNCoL is also
accessible, though it has not been crystallographically characterized. Its
1H NMR spectrum is consistent with two inequivalent diketiminate
environments. An N-N stretching vibration is present in the IR spectrum
at 1806 cm-1 (1743 cm-1 with 15N2). The N-N stretching mode is not
observed in infrared spectra of LFeNNFeL or LCoNNCoL, and the
observation of an infrared-active N-N band is strong evidence for the
heterobimetallic complex LFeNNCoL. See the Supporting Information for
characterization of this and other compounds.
(10) Related magnetism of an MNNM core: Curley, J. J.; Cook, T. R.; Reece,
S. Y.; Muller, P.; Cummins, C. C. J. Am. Chem. Soc. 2008, 130, 9394–
9405.
(11) Pfirrmann, S.; Limberg, C.; Herwig, C.; Sto¨sser, R.; Ziemer, B. Angew.
Chem., Int. Ed. 2009, 48, 3357–3361.
(12) Harada, J.; Ogawa, K. J. Am. Chem. Soc. 2004, 126, 3539–3544.
(13) The Co-N single bonds in LCoNNCoL are 1.83 Å, and a Co-N triple
bond in a three-coordinate diketiminate complex is 1.62 Å. See: Dai, X.;
Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798–4799.
Figure 1. Solid state structures of (a) LCoNNCoL and (b) K2LCoNNCoL
(right), using 50% thermal ellipsoids. Metrical parameters are in
Table 1.
JA808783U
9
9472 J. AM. CHEM. SOC. VOL. 131, NO. 27, 2009