Communication
ChemComm
Additionally, formation of an exciplex by coordination of a References
R
pendant N-donor of the N4 ligand to form a five-coordinate
species could be another mechanism for photoluminescence
1
(a) J. Li, C. Nagamani and J. S. Moore, Acc. Chem. Res., 2015, 48,
181–2190; (b) C. Calvino, L. Neumann, C. Weder and S. Schrettl,
J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 640–652.
2
1
0a,11
quenching.
Indeed, NMR studies show that only the
3
2 (a) D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, D. Van Gough,
S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martinez, S. R. White,
J. S. Moore and N. R. Sottos, Nature, 2009, 459, 68–72; (b) C. K. Lee,
B. A. Beiermann, M. N. Silberstein, J. Wang, J. S. Moore, N. R. Sottos
and P. V. Braun, Macromolecules, 2013, 46, 3746–3752; (c) Y. Lin,
M. H. Barbee, C. C. Chang and S. L. Craig, J. Am. Chem. Soc., 2018,
40, 15969–15975.
3 (a) Y. Chen and R. P. Sijbesma, Macromolecules, 2014, 47, 3797–3805;
b) Y. Chen, A. J. Spiering, S. Karthikeyan, G. W. Peters, E. W. Meijer
k -isomer is present in solutions of bulky complexes Cu5 and
4
3
Cu6, while both k - and k -isomers were observed to be present
in equilibrium for Cu3 and Cu4 (Scheme 2). Less favorable
pendant amine arm binding in bulkier complexes is also
8
consistent with cyclic voltammetry studies.
1
Notably, the rate of isomerization of complex Cu6 in solution
À1
(
was found to be ca. 16 s and it is expected to be even slower in a
and R. P. Sijbesma, Nat. Chem., 2012, 4, 559–562; (c) J. M. Clough,
A. Balan, T. L. van Daal and R. P. Sijbesma, Angew. Chem., Int. Ed.,
polymer matrix, making it several orders of magnitude slower than
8
non-radiative and radiative decay processes (Table 1). Based on
2016, 55, 1445–1449; (d) E. Ducrot, Y. Chen, M. Bulters,
this, we attribute the observed luminescence response to changes
in the dynamics of the excited state, rather than to isomeriza-
R. P. Sijbesma and C. Creton, Science, 2014, 344, 186–189.
4
(a) K. Imato, A. Irie, T. Kosuge, T. Ohishi, M. Nishihara, A. Takahara
and H. Otsuka, Angew. Chem., Int. Ed., 2015, 54, 6168–6172; (b) K. Imato,
T. Kanehara, S. Nojima, T. Ohishi, Y. Higaki, A. Takahara and H. Otsuka,
Chem. Commun., 2016, 52, 10482–10485; (c) K. Imato, T. Kanehara,
T. Ohishi, M. Nishihara, H. Yajima, M. Ito, A. Takahara and H. Otsuka,
ACS Macro Lett., 2015, 4, 1307–1311; (d) T. Kosuge, X. Zhu, V. M. Lau,
D. Aoki, T. J. Martinez, J. S. Moore and H. Otsuka, J. Am. Chem. Soc.,
2019, 141, 1898–1902; (e) H. Oka, K. Imato, T. Sato, T. Ohishi, R. Goseki
and H. Otsuka, ACS Macro Lett., 2016, 5, 1124–1127.
(a) R. G ¨o stl and R. P. Sijbesma, Chem. Sci., 2016, 7, 370–375; (b) M. J.
Robb, T. A. Kim, A. J. Halmes, S. R. White, N. R. Sottos and J. S. Moore,
J. Am. Chem. Soc., 2016, 138, 12328–12331; (c) T. Wang, N. Zhang, J. Dai,
Z. Li, W. Bai and R. Bai, ACS Appl. Mater. Interfaces, 2017, 9, 11874–11881.
(a) H. Yabu, Y. Saito, S. Saito, S. Yamagichi and S. Nobusue, US Pat.
1
2
tion suppression that was proposed for an analogous system.
In summary, we report a highly sensitive mechanophore based
R
+
on the ( N4)Cu(NHC) complex, which was incorporated as a cross-
linker in polybutylacrylate. This system shows a highly sensitive
response to mechanical force, allowing for the detection of
mechanical stress changes even at small strain and stress values,
and it enables the direct visualization of mechanical stress. The
covalent incorporation of the Cu-based mechanophore as a cross-
linker is necessary to observe of a mechanoresponse. Such high
sensitivity is superior to many currently reported system based on
classical mechanophores such as spiropyrans, diaryldibenzofura-
5
6
20190031820A1, 2019; (b) Y. Sagara, M. Karman, E. Verde-Sesto,
K. Matsuo, Y. Kim, N. Tamaoki and C. Weder, J. Am. Chem. Soc.,
2018, 140, 1584–1587.
G. A. Filonenko and J. R. Khusnutdinova, Adv. Mater., 2017, 29, 1700563.
See ESI† for details.
P. H. Patil, G. A. Filonenko, S. Lapointe, R. R. Fayzullin and
J. R. Khusnutdinova, Inorg. Chem., 2018, 57, 10009–10027.
0 (a) D. R. McMillin, J. R. Kirchhoff and K. V. Goodwin, Coord. Chem.
Rev., 1985, 64, 83–92; (b) C. T. Cunningham, K. L. H. Cunningham,
J. F. Michalec and D. R. McMillin, Inorg. Chem., 1999, 38, 4388–4392;
(c) D. Felder, J.-F. Nierengarten, F. Barigelletti, B. Ventura and
N. Armaroli, J. Am. Chem. Soc., 2001, 123, 6291–6299; (d) A. Lavie-
Cambot, M. Cantuel, Y. Leydet, G. Jonusauskas, D. M. Bassani and
N. D. McClenaghan, Coord. Chem. Rev., 2008, 252, 2572–2584;
(e) O. Green, B. A. Gandhi and J. N. Burstyn, Inorg. Chem., 2009,
2–5
none and others.
The mechanism of mechanoresponse is
7
8
9
different from commonly used organic-based mechanophores as
it does not involve covalent bond cleavage/formation, but is based
on restricting the mobility of the fluxional Cu complex and thus
suppressing non-radiative decay as confirmed by our studies of the
model systems. Considering the high sensitivity and good air
stability of these systems, they may find use in real-time visualiza-
tion and in situ sensing of mechanical stress via coating or
incorporation into common construction materials in aerospace
or civil engineering. Generally, the conformationally flexible
1
13
48, 5704–5714; ( f ) M. W. Mara, K. A. Fransted and L. X. Chen,
macrocyclic ligands resemble allosteric enzyme mimic systems
Coord. Chem. Rev., 2015, 282–283, 2–18.
showing stimuli-responsive structural changes, and we plan to
further utilize these ligands to study mechanocontrolled reactivity
and properties of coordination compounds.
This work was supported by JSPS KAKENHI Grant Number
JP18K05247. We thank Dr Takuya Miyazawa, Dr Kieran Deasy
1
1 (a) E. M. Stacy and D. R. McMillin, Inorg. Chem., 1990, 29, 393–396; (b) L. X.
Chen, G. B. Shaw, I. Novozhilova, T. Liu, G. Jennings, K. Attenkofer,
G. J. Meyer and P. Coppens, J. Am. Chem. Soc., 2003, 125, 7022–7034.
2 (a) G. A. Filonenko, J. A. M. Lugger, C. Liu, E. P. A. van Heeswijk,
M. Hendrix, M. Weber, C. Muller, E. J. M. Hensen, R. P. Sijbesma
and E. A. Pidko, Angew. Chem., Int. Ed., 2018, 57, 16385–16390;
(b) G. A. Filonenko, D. Sun, M. Weber, C. Muller and E. A. Pidko,
J. Am. Chem. Soc., 2019, 141, 9687–9692.
1
(MEMS, OIST), Dr Michael Roy (IAS, OIST), Engineering support
section, and Izuru Karimata (Kobe University) for technical support
and for helpful discussions.
1
3 (a) H. J. Yoon and C. A. Mirkin, J. Am. Chem. Soc., 2008, 130,
11590–11591; (b) H. J. Yoon, J. Kuwabara, J.-H. Kim and C. A. Mirkin,
Science, 2010, 330, 66–69; (c) H. J. Yoon, J. Heo and C. A. Mirkin, J. Am.
Chem. Soc., 2007, 129, 14182–14183; (d) M. Raynal, P. Ballester, A. Vidal-
Ferran and P. W. N. M. van Leeuwen, Chem. Soc. Rev., 2014, 43,
Conflicts of interest
1734–1787; (e) J. Kuwabara, H. J. Yoon, C. A. Mirkin, A. G. Di Pasquale
There are no conflicts to declare.
and A. L. Rheingold, Chem. Commun., 2009, 4557–4559.
This journal is ©The Royal Society of Chemistry 2020
Chem. Commun., 2020, 56, 50--53 | 53