8750
J . Org. Chem. 1997, 62, 8750-8759
Regioselective P r ep a r a tion of 2,4-, 3,4-, a n d 2,3,4-Su bstitu ted
F u r a n Rin gs. 2.1 Regioselective Lith ia tion of
2-Silyla ted -3-su bstitu ted F u r a n Rin gs
Edward Bures, J ames A. Nieman, Shuyuan Yu, Patrick G. Spinazze´, J ean-Louis J . Bontront,
Ian R. Hunt, Arvi Rauk, and Brian A. Keay*
Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
Received J une 17, 1997X
A new method for the preparation of 3,4- and 2,5-disubstituted furan rings is described. A variety
of 2-silylated-3-(hydroxymethyl)furans and 2-silylated-3-furoic acids lithiate exclusively at C-4 when
treated with 2.2 equivs of BuLi. The resulting dianions were quenched with a variety of electrophiles
to provide 2-silylated-3-(hydroxymethyl)-4-substituted furans and 2-silylated-4-substituted 3-furoic
acids in good to excellent yields. Removal of the silyl group (n-Bu4NF) provided a variety of
4-substituted-3-(hydroxymethyl)furans and methyl 4-substituted-3-furoates, respectively. The latter
esters were prepared due to difficulties encountered in isolating 4-substituted-3-furoic acids. The
site of lithiation was altered by protecting the 3-hydroxyl group with a triethylsilane. Lithiation
of 2-silylated-3-(((triethylsilyl)oxy)methyl)furan with 1.2 equivs of BuLi followed by the addition of
electrophiles provided 2-silylated-3-(((triethylsilyl)oxy)methyl)-5-substituted furan rings. Subse-
quent removal of both silyl groups provided 2,4-disubstituted furan rings in moderate to good yields.
A rationale is provided to explain why protection of the hydroxyl group at C-3 leads to a change in
lithiation from the C-4 to the C-5 position of the furan ring. In addition, an explanation for the
observed effect of adding HMPA or LiCl to the solution during the lithiation of 2-(tert-
butyldimethylsilyl)-3-(hydroxymethyl)furan is provided.
In the preceding paper,1 the difficulty in preparing 3,4-
lithiation of substituted furan rings. The C-4 lithiation
of a 3-substituted furan, however, has not been successful
and 2,4-disubstituted furan rings due to the preference
for furan rings to lithiate2 and add electrophiles3 in the
C-2 or C-5 positions was discussed. New synthetic routes
toward the preparation of furan rings which contain
groups in the 3 and/or 4 positions are useful, since many
natural products incorporate furan rings with either a
3,4- or 2,4-disubstituted or 2,3,4-trisubstituted pattern.4
This paper describes a full account of our work in this
area.
Some previous reports on the preparation of 3,4-
disubstituted furans have involved using Diels-Alder/
retro-Diels-Alder chemistry,5 chemical modifications of
3,4-furandicarboxylic acid,6 and the synthetic modifica-
tion of acyclic precursors.7 An alternative approach to
the preparation of 3,4-disubstituted furans is the direct
(5) (a) Weis, C. D. J . Org. Chem. 1962, 27, 3514 and 3520. (b)
Hutton, J .; Potts, B.; Southern, P. F. Synth. Commun. 1979, 9, 789.
(c) Ko¨nig, H.; Graf, F.; Weberndo¨rfer, V. Liebigs Ann. Chem. 1981, 688.
(d) Ansell, M. F.; Caton, M. P. L.; North, P. C. Tetrahedron Lett. 1981,
22, 1727. (e) Ho, M. S.; Wong, H. N. C. J . Chem. Soc., Chem. Commun.
1989, 1238. (f) Yang, Y.; Wong, H. N. C. J . Chem. Soc., Chem. Commun.
1992, 656 and 1723. (g) Song, Z. Z.; Zhou, Z. Y.; Mak, T. C. W.; Wong,
H. N. C. Angew. Chem., Int. Ed. Engl. 1993, 32, 432. (h) Wong, H. N.
C. Acc. Chem. Res 1989, 22, 145. (i) Naganawa, A.; Ichikawa, Y.; Isobe,
M. Synlett 1993, 737. (j) Song, Z. Z.; Wong, H. C. J . Org. Chem. 1994,
59, 33. (k) Song, Z. Z.; Ho, M. S.; Wong, H. N. C. J . Org. Chem. 1994,
59, 3917. (l) Song, Z. Z.; Wong, H. N. C. Liebigs Ann. Chem. 1994, 29.
(m) Yang, Y.; Wong, H. N. C. Tetrahedron 1994, 50, 9583. (n) Baba,
Y.; Sakamoto, T.; Kanematsu, K. Tetrahedron Lett. 1994, 35, 5677. (o)
Baba, Y.; Sakamoto, Y.; Soejima, S.; Kanematsu, K. Tetrahedron 1994,
50, 5645 and references therein. (p) Naganawa, A.; Ichikawa, Y.; Isobe,
M. Tetrahedron 1994, 50, 8969. A Diels-Alder/retro-Diels-Alder
sequence has been used recently to make 3,4-disubstituted thiophenes,
see: Ye, X.-S.; Wong, N. C. J . Chem. Soc., Chem. Commun. 1996, 339.
(6) (a) Corey, E. J .; Crouse, D. N.; Anderson, J . E. J . Org. Chem.
1975, 40, 2140. (b) Schultz, A. G.; Motyka, L. A. J . Am. Chem. Soc.
1982, 104, 5800. (c) Schultz, A. G.; Motyka, L. A.; Plummer, M. J . Am.
Chem. Soc. 1986, 108, 1056.
(7) (a) Garst, M. E.; Spence, T. A. J . Am. Chem. Soc. 1973, 95, 250.
(b) Hunger, J .; Wolff, C.; Tochtermann, W.; Peters, E.-M.; Peters, K.;
Georg von Schnering, H. Chem. Ber. 1986, 119, 2698. (c) Reich, H. J .;
Olson, E. J . Org. Chem. 1987, 52, 2315. (d) Price M. E.; Schore, N. E.
J . Org. Chem. 1989, 54, 2777. (e) Kinder, F. R.; Padwa, A. Tetrahedron
Lett. 1990, 31, 6835. (f) Suzuki, T.; Kubomura, K.; Fuchii, H.;
Takayama, H. J . Chem. Soc., Chem. Commun. 1990, 1687. (g) Ando,
K.; Akadegawa, N.; Takayama, H. J . Chem. Soc., Chem. Commun.
1991, 1765. (h) Ando, K.; Hatano, C.; Akadegawa, N.; Shigihara, A.;
Takayama, H. J . Chem. Soc., Chem. Commun. 1992, 870.
X Abstract published in Advance ACS Abstracts, November 15, 1997.
(1) For part 1, see: Bures, E.; Spinazze, P. G.; Beese, G.; Hunt, I.
R.; Rogers, C.; Keay, B. A. J . Org. Chem. 1997, 62, 8741.
(2) Gschwend, H. W.; Rodriguez, H. R. Org. React. 1979, 26, 1.
(3) (a) Bosshard, P.; Eugster, C. H. Adv. Heterocycl. Chem. 1966, 6,
378. (b) Sargent, M. V.; Cresp, T. M. Compr. Org. Chem. 1979, 4, 693.
(c) Dean, F. M. Adv. Heterocycl. Chem. 1982, 30, 167. (d) Dean, F. M.
Adv. Heterocycl. Chem. 1982, 31, 238. (e) Donnelly, D. M. X.; Meegan,
M. J . Compr. Heterocycl. Chem. I 1984, 4, 657. (f) Sargent, M. V.; Dean,
F. M. Compr. Heterocycl. Chem. I 1984, 4, 599. (g) Heany, H.; Ahn, J .
S. Compr. Heterocycl. Chem. II 1996, 2, 297. (h) Freidrichsen, W.
Compr. Heterocycl. Chem. II 1996, 2, 351.
(4) For some recent examples, see: (a) Keay, B. A.; Dibble, P. W.
Compr. Heterocycl. Chem. II 1996, 2, 395. (b) Fraga, B. M. Nat. Prod.
Rep. 1992, 9, 217. (c) Faulkner, D. J . Nat. Prod. Rep. 1992, 9, 323. (d)
Fraga, B. M. Nat. Prod. Rep. 1992, 9, 557. (e) Fraga, B. M. Nat. Prod.
Rep. 1991, 8, 61. (f) Faulkner, D. J . Nat. Prod. Rep. 1991, 8, 269. (g)
Fraga, B. M. Nat. Prod. Rep. 1990, 7, 515. (h) Faulkner, D. J . Nat.
Prod. Rep. 1988, 5, 269. (i) Hanson, J . R. Nat. Prod. Rep. 1989, 5, 347.
For the use of 3,4-disubstituted furans as intermediates in synthesis,
see: (j) Froborg, J .; Magnusson, G.; Thoren, S. J . Org. Chem. 1975,
40, 1595. (k) Lipshutz, B. H. Chem. Rev. 1986, 86, 795. (l) Katagiri,
N.; Akatsuka, H.; Haneda, T.; Kaneko, C. Chem. Lett. 1987, 2257. (m)
J ung, M. E.; Usui, Y.; Vu, C. T. Tetrahedron Lett. 1987, 28, 5977. (n)
Katagiri, N.; Akatsuka, H.; Haneda, T.; Kaneko, C. J . Org. Chem. 1988,
53, 5464. (o) Kanematsu, K.; Soejima, S.; Wang, G. Tetrahedron Lett.
1991, 32, 4761. (p) Eberbach, W.; Laber, N.; Bussenius, J .; Fritz, H.;
Rihs, G. Chem. Ber. 1993, 126, 975.
(8) (a) Zalushi, M. C.; Robba, M.; Bonhomme, M. Bull. Soc. Chim.
Fr. 1970, 1838. (b) Florentin, D.; Roques, B. P.; Fournie-Zaluski, M.
C. Bull. Soc. Chim. Fr. 1976, 1999. (c) Ly, N. D.; Schlosser, M. Helv.
Chim. Acta 1977, 60, 2085. (d) Chadwick, D. J .; Willbe, C. J . Chem.
Soc., Perkin Trans. 1 1977, 887. (e) Knight, D. W. Tetrahedron Lett.
1979, 20, 469. (f) Knight, D. W.; Nott, A. P. J . Chem. Soc., Perkin Trans.
1 1981, 1125. (g) Goldsmith, D.; Liotta, D.; Saindane, M.; Waykole,
L.; Bowen, P. Tetrahedron Lett. 1983, 24, 5835. (h) Tanis, S. P.; Head,
D. B. Tetrahedron Lett. 1984, 25, 4451. (i) Katsumura, S.; Hori, K.;
Fujiwara, S.; Isoe, S. Tetrahedron Lett. 1985, 26, 4625. (j) Hartman,
G. D.; Halczenko, W. Tetrahedron Lett. 1987, 28, 3241. (k) Commins,
D. L.; Killpack, M. O. J . Org. Chem. 1987, 52, 104. (l) Commins, D. L.;
Weglarz, M. A. J . Org. Chem. 1988, 53, 4437.
S0022-3263(97)01098-0 CCC: $14.00 © 1997 American Chemical Society