T.A. Khan et al. / Spectrochimica Acta Part A 73 (2009) 622–629
[2] S. Chandra, X. Sangeetika, Spectrochim. Acta 60 A (2004) 147.
629
After interaction with the base pairs of DNA, the –* orbital
of the bound ligand can couple with the orbital of the base
pairs, due to the decrease –* transition energy, which results in
bathochromic shift [38]. The shift in the spectra of 1d suggests the
more interference of orbital by this molecule, which also corrobo-
rates with the high binding affinity of this 1d. The above changes are
indicative of the conformational alteration of DNA on but of varied
extent.
[3] Min Wang, Liu-Fang Wang, Yi-Zhi Li, Qin-Xi-Li, Zhi-Dong Xu, Dong-Ming Qu,
Trans. Met. Chem. 26 (2001) 307.
[4] N.N. Gulerman, S. Rollas, H. Erdeniz, M. Kiraj, J. Pharm. Sci. 26 (11) (2001) 1.
[5] V. Mishra, S.N. Pandeya, S. Anathan, Acta Pharmaceutica Turcica 42 (4) (2000)
139.
[6] P. Tarasconi, S. Capacchi, G. Pelosi, M. Cornia, R. Albertini, A. Bonati, P.P. Dall’
Aglio, P. Lunghi, S. Pinelli, Bioorganic. Med. Chem. 8 (2000) 154.
[7] S. Chandra, K. Gupta, Trans. Met. Chem. 27 (2002) 196.
[8] L. Valencia, H. Adams, R. Bastida, D.E. Fenton, A. Macias, Inorg. Chim. Acta 317
(2001) 45.
[9] A.A. Saleh, J. Coord. Chem. 58 (3) (2005) 255.
[10] D.S. Kumar, V. Alexander, Polyhedron 18 (1999) 1561.
[11] J.L. Sessler, R.A. Miller, Biochem. Pharmacol. 59 (2000) 733.
[12] A. Martell, J. Penitka, D. Kong, Coord. Chem. Rev. 216 (2001) 55.
[13] (a) V. McKee, in: A.G. Sikes (Ed.), Advanced in Inorganic Chemistry, vol. 40,
Academic Press, San Diego, USA, 1993, p. 323;
(b) S. Brooker, Coord. Chem. Rev. 222 (2001) 33.
[14] H. Keypour, H. Goudaziafshar, A.K. Brisdon, R.G. Pritchard, M. Rezaeivala, Inorg.
Chim. Acta 361 (2008) 1415.
[15] A. Golcu, M. Tumer, H. Demirelli, R.A. Wheatley, Inorg. Chim. Acta 358 (2005)
1785.
[16] C.-L. Liu, J.-Y. Zhou, Q.-X. Li, L.-J. Wang, Z.-R. Liao, H.-B. Xu, J. Inorg. Biochem. 75
(1999) 233.
[17] D.K. Chand, H.J. Schneider, J.A. Aguilar, F. Escarti, E. Garcia-Esspara, S.V. Luis,
Inorg. Chim. Acta 316 (2001) 71.
[18] K. Krishnankutty, M.B. Ummathur, J. Indian Chem. Soc. 83 (2006) 883.
[19] R.E. Sievers, S.B. Turnispeed, L. Huang, A.F. Laglante, Coord. Chem. Rev. 128
(1993) 285.
[20] N. Raman, C. Thangaraja, Trans. Met. Chem. 30 (2005) 317.
[21] A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, third ed., Longmans,
London, 1961.
[22] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am.
Chem. Soc. 111 (1989) 3051.
[23] X.-Z. Feng, Z. Lin, L.-J. Yang, C. Wang, C.-L. Bai, Talanta 47 (1998) 1223.
[24] C.N. Reilly, R.W. Schmid, F.S. Sadek, J. Chem. Ed. 36 (1959) 619.
[25] N. Nishat, Rahis-ud-din, M.M. Haq, Trans. Met. Chem. 28 (2003) 948.
[26] P.R. Athapan, G. Rajagopal, Polyhedron 15 (1990) 527.
[27] M. Shakir, N. Begum, S. Parveen, P. Chingsubam, S. Tabassum, Synth. React. Inorg.
Met. -Org. Chem. 34 (2004) 1135.
4. Conclusion
The novel 14 and 16 membered Schiff base macrocyclic lig-
ands (L1) and (L2) have been synthesized by condensation reaction
between 2ꢀ-methylacetoacetanilide and aliphatic diamines and
their macrocyclic complexes, prepared by interaction of ligands,
L1 or L2 with hydrated metal(II) nitrates have been character-
ized by various physico-chemical studies. The ligand to metal
stoichiometry and the nature of bonding was ascertained on the
basis elemental analyses, position of molecular ion peaks in the
mass spectra and conductivity data. The formation of the proposed
macrocyclic framework has been inferred by the appearance of
imine bands in the IR and corresponding proton resonance sig-
nals in the 1H and 13C NMR spectra. A square planar geometry
was deduced for complexes derived from ligand L1 while an octa-
hedral geometry with slight distortion in [Cu(L2)(NO3)2] complex
was inferred for complexes resulted from Ligand L2 on the basis of
UV–visible and EPR spectral studies and magnetic moment data.
The fluorescence and absorption studies demonstrated a consider-
able interaction between the complexes 1d and 2d and calf thymus
DNA.
[28] N. Raman, J. Indian Chem. Soc. 84 (2007) 29.
[29] M. Shakir, Y. Azim, H.T.N. Chishti, N. Begum, P. Chingsubam, M.Y. Siddiqi, J. Braz.
Chem. Soc. 17 (2006) 272.
[30] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, Wiley/Interscience, New York, NY, 1970.
Acknowledgments
The Chairman, Department of Chemistry, Aligarh Muslim Uni-
versity, Aligarh, India is acknowledged for providing the necessary
research facilities. The authors thank the Regional Sophisticated
Instrumentation Center, CDRI Lucknow for providing mass spectral
and analytical data for the compounds.
[31] S. Chandra, L.K. Gupta, D. Jain, Spectrochim. Acta 60 A (2004) 2411.
[32] D. Kivelson, R. Neiman, J. Chem. Phys. 35 (1962) 149.
[33] B.J. Hathaway, in: J.N. Bradley, R.D. Gillard (Eds.), Essays in Chemistry, Academic
Press, New York, 1971.
[34] A.B.P. Liver, Inorganic Electronic Spectroscopy, second ed., Elsevier, Amsterdam,
1984.
[35] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, fifth ed., John Wiley,
Singapore, 1988.
[36] P. Yang, M.-L. Guo, B.-S. Yang, Chin. Sci. Bull. 39 (1994) 997.
[37] E.C. Long, J.K. Barton, Acc. Chem. Res. 23 (1990) 271.
[38] X.F. He, H. Chen, L. Xu, L.N. Ji, Polyhedron 17 (1998) 3161.
References
[1] W. Radecka-Paryzek, V. Patroniak, J. Lisowski, Coord. Chem. Rev. 249 (2005)
2156.