L. A. Howell et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5880–5883
13. Zhang, F.; Moses, J. E. Org. Lett. 2009, 11, 1587.
5883
may have affected their antitumour activity (data not shown). All
compounds were taken up by the cells and this is unlikely to ex-
plain the total lack of activity of the 3-carboxamides. If the acri-
dine-4-carboxamides are inhibitors of topoisomerase II, as has
previously been reported, then it seems likely that the piperidine
substituted analogues are unable to exert an effect on this enzyme,
at least in these cell lines.
In summary, benzyne click chemistry is an important addition
to the arsenal of reactions available to the medicinal chemist. We
have shown that it can be applied to the synthesis of threading
intercalators that bind to DNA with reasonable affinity and have
up to low micromolar antitumour activity. The reasons for differ-
ences in the activity of the different compounds are still under
investigation but do not seem to correlate with DNA binding affin-
ity or cellular uptake. This may suggest that these compounds vary
in their ability to inhibit topoisomerases, as described by Ferguson
and co-workers, and we are currently investigating this potential
mode of action. This is also the first description of the azide-substi-
tuted threading intercalators and these compounds are currently
being studied for their ability to undergo click reactions under
the usual Sharpless conditions.
14. Reynolds, G. A. J. Org. Chem. 1964, 29, 3733.
15. Forster, M. O.; Newman, S. H. J. Chem. Soc. 1911, 99, 1277.
16. Goodell, J. R.; Madhok, A. A.; Hiasa, H.; Ferguson, D. M. Bioorg. Med. Chem. 2006,
14, 5467.
17. Compound 12:
(N3), 1643 (CO). dH (300 MHz; CDCl,) 8.32 (1H, d, J = 1.5 Hz, H-4), 8.13 (2H, t,
J = 9.3 Hz, H-1 + H-8), 7.93 (1H, d, J = 8.7 Hz, H-5), 7.78 (1H, dd, J1 = 1.8 Hz, J2
m
max/cmꢀ1 3275 (NH), 2936 (CH2/CH3), 2819 (CH2/CH3), 2094
=
9.0 Hz, H-2), 7.69–7.63 (1H, m, H-6), 7.12–7.36 (2H, m, H-7 + NH), 3.95 (2H, t,
J = 5.4 Hz, CH2N3), 3.65–3.55 (4H, m, CONHCH2 + NHCH2), 2.56 (2H, t, J = 5.9 Hz,
CH2N(CH3)2), 2.29 (6H, s, N(CH3)2). m/z (ES+) 378.2035 [M+H]+ C20H24N7O
requires 378.2037; compound 13: m
max/cmꢀ1 3273 (NH), 2935 (CH2/CH3), 2790
(CH2/CH3), 2095 (N3), 1628 (CO). dH (300 MHz; CDCl3) 8.13 (1H, d, J = 9.0 Hz, H-
8), 8.09 (1H, d, J = 9.0 Hz, H-1), 7.89 (2H, br s, H-4 + H-5), 7.62 (1H, t, J = 7.5 Hz,
H-6), 7.37–7.30 (2H, m, H-7 + H-2), 3.92 (2H, t, J = 5.6 Hz, CH2N3), 3.83 (2H, br s,
CONCH2), 3.59 (2H, t, J = 5.6 Hz, NHCH2), 3.51 (2H, br s, CONCH2), 2.49 (2H, br s,
CH2NCH3), 2.35 (2H, br s, CH2NCH3), 2.30 (3H, s, NCH3). m/z (ES+) 390.2035
[M+H]+ C21H24N7O requires 390.2037; compound 14: max/cmꢀ1 3313 (NH),
m
2935 (CH2/CH3), 2856 (CH2/CH3), 2095 (N3), 1638 (CO). dH (300 MHz; MeOD)
8.54 (1H, d, J = 6.6 Hz, H-1), 8.36 (1H, dd, J1 = 1.4 Hz, J2 = 8.7 Hz, H-3), 8.21 (1H,
d, J = 8.7 Hz, H-8), 7.87 (1H, d, J = 8.1 Hz, H-5), 7.66 (1H, t, J = 8.4 Hz, H-6), 7.37–
7.32 (2H, m, H-2 + H-7), 3.92 (2H, t, J = 6.3 Hz, CH2N3), 3.69 (2H, t J = 6.3 Hz,
CONHCH2), 3.60 (2H, t, J = 5.7 Hz, NHCH2), 2.70 (2H, t, J = 6.5 Hz, CH2N(CH3)2)
2.39 (6H, s, N(CH3)2). m/z (ES+) 378.2039 [M+H]+ C20H24N7O requires
378.2037; compound 15: m
max/cmꢀ1 3323 (NH), 2936 (CH2/CH3), 2799 (CH2/
CH3), 2096 (N3), 1608 (CO). dH (500 MHz; CH3OD) 8.34 (1H, dd, J1 = 1.0 Hz,
J2 = 8.5 Hz, H-1), 8.24 (1H, d, J = 8.5 Hz, H-8), 7.94 (1H, d, J = 8.5 Hz, H-5), 7.65–
7.61 (2H, m, H-3 + H-6), 7.37–7.32 (2H, m, H-2 + H-7), 3.96 (2H, br s, CONCH2),
3.92 (2H, t, J = 5.5 Hz, CH2N3), 3.58 (2H, t, J = 5.5, NHCH2), 3.20 (2H, br, s,
CONCH2), 2.65 (2H, br s, CH2NH), 2.29 (5H, s, NCH3 + CH2NH). m/z (ES+)
390.2032 [M+H]+ C21H24N7O requires 390.2037.
Acknowledgements
18. Compound 3: m
max /cmꢀ1 3253 (NH), 3034 (CH), 2935 (CH2/CH3), 1637 (CO). dH
This work was funded by a UEA graduate studentship (L.H.) and
a summer studentship (A.H.). Mass spectra were obtained from the
National Mass Spectrometry service at Swansea.
(500 MHz; MeOD) 8.57 (1H, d, J = 9.0 Hz, H-1), 8.54 (1H, d, J = 8.5 Hz, H-5), 8.15
(1H, d, J = 1.0 Hz, H-4), 8.01 (1H, t, J = 7.5 Hz, H-7), 7.96 (2H, d, J = 8.5 Hz,
benzyl), 7.87 (1H, d, J = 9.0 Hz, H-8), 7.73–7.71 (1H, m, H-2), 7.64–7.59 (2H, m,
H-6 + benzyl), 7.49 (1H, app q, J = 7.5 Hz, benzyl), 4.36 (2H, t, J = 5.5 Hz, CH2N3),
4.31 (2H, t, J = 6.3 Hz, CH2N(CH3)2), 3.96 (2H, t, J = 5.5 Hz, NHCH2), 3.78 (6H, s,
N(CH3)2), 3.69 (2H, t, J = 6.3 Hz, CONHCH2). m/z (ES+) 454.2345 [M+H]+
References and notes
C26H28N7O requires 454.2350; compound 4:
m
max/cmꢀ1 3349 (NH), 3024
(CH), 2937 (CH2/CH3), 2915 (CH2/CH3), 1635 (CO). dH (500 MHz; MeOD) 8.66
(1H, d, J = 8.5 Hz, H-1), 8.56 (1H, d, J = 8.5 Hz, H-5), 8.04–8.01 (1H, m, H-7), 8.00
(1H, d, J = 1.0 Hz, H-4), 7.96 (2H, d, J = 8.0 Hz, benzyl), 7.89 (1H, d, J = 8.5 Hz, H-
8), 7.74 (1H, t, J = 7.8 Hz, benzyl), 7.68 (1H, d, J = 7.0 Hz, benzyl), 7.66–7.63 (2H,
m, H-2 + H-6), 4.68 (2H, br s, CH2), 4.58 (2H, br s, CH2), 4.38 (2H, t, J = 5.5 Hz,
CH2N3), 4.22 (2H, br s, CH2), 3.97 (2H, t, J = 5.5 Hz, NHCH2), 3.74 (2H, br s, CH2),
3.63 (3H, s, NCH3). m/z (ES+) 466.2347 [M+H]+ C27H28N7O requires 466.2350;
1. Brana, M. F.; Cacho, M.; Gradillas, A.; de Pasxual-Teresa, B.; Ramos, A. Curr.
Pharm. Des. 2001, 7, 1745.
2. Wakelin, L. P. G.; Chetcuti, P.; Denny, W. A. J. Med. Chem. 1990, 33, 2039.
3. Atwell, G. J.; Cain, B. F.; Baguley, B. C.; Finlay, G. J.; Denny, W. A. J. Med. Chem.
1984, 27, 1481.
4. Woynarowski, J. M.; McCarthy, K.; Reynolds, B.; Beerman, T. A.; Denny, W. A.
Anticancer Drug Des. 1994, 9, 9.
5. Adams, A.; Guss, J. M.; Collyer, C. A.; Denny, W. A.; Wakelin, L. P. G. Biochemistry
1999, 38, 9221.
6. Adams, A.; Guss, J. M.; Denny, W. A.; Wakelin, L. P. G. Nucleic Acids Res. 2002, 30,
719.
7. Hopcroft, N. H.; Brogden, A. L.; Searcey, M.; Cardin, C. J. Nucleic Acids Res. 2006,
34, 6663.
8. Goodell, J. R.; Ougolkov, A. V.; Hiasa, H.; Kaur, H.; Remmel, R.; Billadeau, D. D.;
Ferguson, D. M. J. Med. Chem. 2008, 51, 179.
compound 5: m
max/cmꢀ1 3359 (NH), 3039 (CH), 2935 (CH2/CH3), 1621 (CO). dH
(500 MHz; MeOD) 8.71 (1H, d, J = 8.0 Hz, H-1), 8.55 (1H, d, J = 8.5 Hz, H-5), 8.19
(1H, d, J = 7.5 Hz, H-3), 8.04 (1H, t, J = 7.8 Hz, H-7), 7.99 (2H, d, J = 8.5 Hz,
benzyl), 7.94 (1H, d, J = 8.5 Hz, H-8), 7.64 (1H, t, J = 7.5 Hz, H-6)), 7.58–7.53 (2H,
m, H-2 + benzyl), 7.41 (1H, t, J = 7.5 Hz, benzyl), 4.39–4.34 (4H, m,
CH2N(CH3)2 + CH2N3), 3.97 (2H, t, J = 5.0 Hz, NHCH2), 3.80 (6H, s, N(CH3)2),
3.75 (2H, t, J = 6.0 Hz, CONHCH2). m/z (ES+) 454.2354 [M+H]+ C26H28N7O
requires 454.2350; compound 6: m
max/cmꢀ1 3358 (NH), 3020 (CH), 2987 (CH2/
CH3), 2945 (CH2/CH3), 1630 (CO). dH (500 MHz; MeOD) 8.63 (1H, d, J = 8.0 Hz,
H-1), 8.51 (1H, d, J = 8.5 Hz, H-5), 8.04 (2H, br d, J = 8.0 Hz, H-8 + H-3), 7.98–
7.93 (3H, m, H-7 + benzyl), 7.74 (1H, t, J = 7.5 Hz, benzyl), 7.66 (1H, t, J = 7.0 Hz,
benzyl), 7.61–7.56 (2H, m, H-6 + H-2), 4.67 (2H, br s, CH2), 4.54 (2H, br s, CH2),
4.35 (2H, s, CH2N3), 4.23 (2H, br s, CH2), 4.08 (2H, br s, CH2), 3.97 (2H, s,
NHCH2), 3.65 (3H, s, NCH3). m/z (ES+) 466.2353 [M+H]+ C27H28N7O requires
466.2350.
9. Oppegard, L. M.; Ougolkov, A. V.; Luchini, D. N.; Schoon, R. A.; Goodell, J. R.;
Kaur, H.; Billadeau, D. D.; Ferguson, D. M.; Hiasa, H. Eur. J. Pharmacol. 2009, 602,
223.
10. Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.
11. Shi, F.; Waldo, J. P.; Chen, Y.; Larock, R. C. Org. Lett. 2008, 10, 2409.
12. Campbell-Verduyn, L.; Elsinga, P. H.; Mirfeizi, L.; Dierckx, R. A.; Feringa, B. L.
Org. Biomol. Chem. 2008, 6, 3461; Chandrasekhar, S.; Seenaiah, M.; Rao, C. L.;
Reddy, C. R. Tetrahedron 2008, 64, 11325.
19. Jenkins, T. C. Methods Mol. Biol. 1997, 90, 195–218.