9 V. M. Cangelosi, T. G. Carter, L. N. Zakharov and D. W. Johnson,
Chem. Commun., 2009, 5606–5608.
10 For reviews: M. Fujita and K. Ogura, Coord. Chem. Rev., 1996,
148, 249–264; P. J. Stang and B. Olenyuk, Acc. Chem. Res., 1997,
30, 502–518; M. Fujita, Chem. Soc. Rev., 1998, 27, 417–425;
G. F. Swiegers and T. J. Malefetse, Chem. Rev., 2000, 100,
3483–3537.
11 For examples: R. Lin, J. H. K. Yip, L. L. Koh, K.-Y. Wong and
K. P. Ho, J. Am. Chem. Soc., 2004, 126, 15852–15869;
I. Fernandez, R. Ruiz, J. Faus, M. Julve, F. Lloret, J. Cano,
´
Fig.
4
(a) [As4L12Cl4] metallacyclophane with two structural
isomers of tetrathia[3.3.3.3]cyclophane: (b) (1,2,4,5)(1,5,4,2) and
(c) (1,2,4,5)(1,2,4,5).
X. Ottenwaelder, Y. Journaux and M. C. Munoz, Angew. Chem.,
Int. Ed., 2001, 40, 3039–3042; J. Hua and W. Lin, Org. Lett., 2004,
6, 861–864.
nor do we see NMR evidence of its existence. Future studies of
the dynamic covalent nature of the arsenic(III)–thiolate bond
may allow access to the inorganic analogs of other important
examples from the cyclophane literature through supra-
12 F. Vogtle, G. Pawlitzki and U. Hahn, in Modern Cyclophane
¨
Chemistry, ed. R. Gleiter and H. Hopf, Wiley-VCH, Weinheim,
2004, pp. 41–80.
13 H. Kawai, T. Umehara, K. Fujiwara, T. Tsuji and T. Suzuki,
Angew. Chem., Int. Ed., 2006, 45, 4281–4286; T. Otsubo, Y. Aso,
F. Ogura, S. Misumi, A. Kawamoto and J. Tanaka, Bull. Chem.
Soc. Jpn., 1989, 62, 164–170.
molecular self-assembly. The [As4L1 Cl4] metallacyclophane
2
has a cavity volume of 28 A3, so further development of this
cage—either by transmetallation or through reactions involving
larger pnictogens—could increase potential for host–guest
interactions.25
14 Crystallographic data for [As4L12Cl4]ꢀC2H2Cl4: C24H24As4Cl12S8,
M = 1293.99, monoclinic, a = 17.9104(11) A, b = 25.7564(16) A,
c = 18.9947(12) A, b = 93.086(1)1, V = 8749.7(9) A3, T = 173 K,
space group P21/c (no. 14), Z = 8, Z0 = 2, 97 922 reflections,
19 054 independent reflections [Rint = 0.0341], R1 = 0.0476, wR2 =
0.1486 and GOF = 1.286 for 15 435 reflections (757 parameters)
with I 4 2s(I); R1 = 0.0579, wR2 = 0.1554, GOF = 1.286 for all
reflections.
In summary, we report the synthesis of three discrete
self-assembled supramolecular structures utilizing the trigonal
pyramidal coordination geometry of trivalent arsenic,
co-crystallized in a single crystal structure. Of particular
15 Crystallographic data for [As4L12Cl4]ꢀcis-[As2L1Cl2]ꢀtrans-
[As2L1Cl2]ꢀCH2Cl2: C37H39As7Cl11S14, M = 1846.91, triclinic,
a = 14.3168(10) A, b = 14.5379(10) A, c = 16.8865(11) A, a =
80.564(1)1, b = 80.511(1)1, g = 61.527(1)1, V = 3032.5(4) A3, T =
interest, the [As4L1 Cl4] structure exhibits S4 symmetry, a
2
point group rare in nature and relatively uncommon in
synthetic chemistry. Importantly, the synthesis and characteri-
zation of these novel [As4L1 Cl4] and [As2L1Cl2] structures
ꢀ
173(2) K, space group P1 (no. 2), Z = 2, 34 380 reflections, 13 158
2
independent reflections [Rint = 0.0280], R1 = 0.0313, wR2
=
0.0721 and GOF = 1.028 for 11 084 reflections (649 parameters)
with I 4 2s(I); R1 = 0.0406, wR2 = 0.0766, GOF = 1.029 for all
reflections.
support the claim that main group elements, with their distinct
coordination geometries, can provide access to new and
interesting supramolecular structure types and designs.
We gratefully acknowledge funding from the National
Science Foundation (CAREER award CHE-0545206).
D.W.J. is a Cottrell Scholar of Research Corporation. This
material is based upon work supported by an NSF Integrative
Graduate Education and Research Traineeship No. DGE-
0549503 (T.G.C.) and the U.S. Department of Education
under Award No. P200A070436 (V.M.C.). The purchase of
the MALDI Mass Spectrometer was made possible by a grant
from the NSF (CHE-0639170).
16 For examples: T. Beissel, R. E. Powers and K. N. Raymond,
Angew. Chem., Int. Ed. Engl., 1996, 35, 1084–1086; C.-Y. Su,
M. D. Smith and H.-C. zur Loye, Angew. Chem., Int. Ed., 2003,
42, 4085–4089.
17 D. S. Touw, C. E. Nordman, J. A. Stuckey and V. L. Pecoraro,
Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 11969–11974.
18 T. A. Shaikh, S. Parkin and D. A. Atwood, J. Organomet. Chem.,
2006, 691, 4167–4171; T. A. Shaikh, R. C. Bakus II, S. Parkin and
D. A. Atwood, J. Organomet. Chem., 2006, 691, 1825–1833.
19 T. Probst, O. Steigelmann, H. Riede and H. Schmidbaur, Chem.
Ber., 1991, 124, 1089–1093; H. Schmidbaur, W. Bublak, B. Huber
and G. Muller, Angew. Chem., Int. Ed. Engl., 1987, 26, 234–236;
¨
H. Schmidbaur, R. Nowak, O. Steigelmann and G. Muller, Chem.
¨
Ber., 1990, 123, 1221–1226.
Notes and references
20 T. N. Guru Row and R. Parthasarathy, J. Am. Chem. Soc., 1981,
103, 477–479; D. B. Werz, T. H. Staeb, C. Benisch, B. J. Rausch,
F. Rominger and R. Gleiter, Org. Lett., 2002, 4, 339–342;
M. J. O’Connor, R. B. Yelle, L. N. Zakharov and M. M. Haley,
J. Org. Chem., 2008, 73, 4424–4432.
1 M. A. Pitt and D. W. Johnson, Chem. Soc. Rev., 2007, 36,
1441–1453; H. Schmidbaur and A. Schier, Organometallics, 2008,
27, 2361–2395.
2 A. H. Cowley, J. Organomet. Chem., 2004, 689, 3866–3872;
R. J. Baker and C. Jones, Dalton Trans., 2005, 1341–1348;
G. Bouhadir and D. Bourissou, Chem. Soc. Rev., 2004, 33,
210–217.
3 B. T. Farrer, C. P. McClure, J. E. Penner-Hahn and
V. L. Pecoraro, Inorg. Chem., 2000, 39, 5422–5423.
4 W. J. Vickaryous, E. R. Healey and D. W. Johnson, Angew.
Chem., Int. Ed., 2004, 43, 5831–5833.
5 M. A. Pitt, L. N. Zakharov, K. Vanka, W. H. Thompson,
B. B. Laird and D. W. Johnson, Chem. Commun., 2008, 3936–3938.
6 W. J. Vickaryous, E. R. Healey, O. B. Berryman and
D. W. Johnson, Inorg. Chem., 2005, 44, 9247–9252.
7 V. M. Cangelosi, L. N. Zakharov, S. A. Fontenot, M. A. Pitt and
D. W. Johnson, Dalton Trans., 2008, 3447–3453; V. M. Cangelosi,
A. C. Sather, L. N. Zakharov, O. B. Berryman and D. W. Johnson,
Inorg. Chem., 2007, 46, 9278–9284.
21 C. A. Allen, V. M. Cangelosi, L. N. Zakharov and D. W. Johnson,
Cryst. Growth Des., 2009, 9, 3011–3013.
22 S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders and
J. F. Stoddart, Angew. Chem., Int. Ed., 2002, 41, 898–952.
23 A. Kunze, S. Bethke, R. Gleiter and F. Rominger, Org. Lett., 2000,
2, 609–612; V. J. Catalano and M. A. Malwitz, J. Am. Chem. Soc.,
2004, 126, 6560–6561; A. Kunze, R. Gleiter and F. Rominger,
Chem. Commun., 1999, 171–172.
24 B. Klieser and F. Vogtle, Angew. Chem., Int. Ed. Engl., 1982, 21,
¨
618.
25 The cavity volume was measured to be 28 A3 using solvent surfaces
(radius = 1.4 A) in WebLab ViewerPro 4.0. This value was
estimated to be the difference in volume of a fully filled [As4L12Cl4]
cavity and the empty [As4L12Cl4] from the crystal structure. NMR
spectroscopic studies showed no evidence of guest binding or
protonation in solution upon treatment with methane or TFA,
respectively.
8 T. G. Carter, W. J. Vickaryous, V. M. Cangelosi and
D. W. Johnson, Comments Inorg. Chem., 2007, 28, 97–122.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3505–3507 | 3507