Angewandte
Chemie
Table 2: Intramolecular hydroamination of alkenes.[a]
104 – 114; e) T. E. Müller in J. T.
Horvµth, Encyclopedia ofCataly-
sis, Wiley, New York, 2002; f) J.
Seayad, A. Tillack, C. G. Hartung,
M. Beller, Adv. Synth. Catal. 2002,
344, 795 – 813; g) J.-J. Brunet, D.
Neibecker in Catalytic Heterofunc-
tionalization (Eds.: A. Togni, H.
Grützmacher), VCH, Weinheim,
2001, pp. 91 – 141; h) M. Nobis, B.
Drießen-Hölscher, Angew. Chem.
2001, 113, 4105 – 4108; Angew.
Chem. Int. Ed. 2001, 40, 3983 –
3985; i) M. Johannsen, K. A. Jør-
gensen, Chem. Rev. 1998, 98, 1689 –
1708; j) T. E. Müller, M. Beller,
Chem. Rev. 1998, 98, 675 – 704;
k) D. M. Roundhill, Chem. Rev.
1992, 92, 1 – 27.
Entry
Substrate
Product
cat. I
[mol%]
Activ.[b]
[mol%]
t [h]
Conv. [%][c]
10
5
5
–
–
5
30
28
8
87[d]
>99
80
1
15a
16a
15b
16b
10
10
5
–
–
5
12
24
5
>99
69[d]
>99
2
13.3
5
–
5
72
52
>99
46
3
4
17a
18a
17b
18b
10
10
36
19
[a] Reaction conditions: amine (430 mmol), catalyst I, benzene (0.5 mL), 1208C. [b] Activator:
[PhNMe2H][B(C6F5)4]. [c] Determined by 1H NMR spectroscopy. [d] Yield of isolated product; the
reaction was carried out at 1008C in toluene.
[2] A. Ates, C. Quinet, Eur. J. Org.
Chem. 2003, 9, 1623 – 1626.
[3] M. R. Crimmin, I. J. Casely, M. S.
Hill, J. Am. Chem. Soc. 2005, 127,
2042 – 2043.
Experimental Section
[4] Rh: a) M. Utsunomiya, R. Kuwano, M. Kawatsura, J. F. Hartwig,
J. Am. Chem. Soc. 2003, 125, 5608 – 5609; Ir: b) R. Dorta, P. Egli,
F. Zürcher, A. Togni, J. Am. Chem. Soc. 1997, 119, 10857 –
10858; Pd: c) M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc.
2003, 125, 14286 – 14287; K. Li, K. K. Hii, Chem. Commun.
2003, 10, 1132 – 1133; Pt: d) J.-J. Brunet, N. C. Chu, O. Diallo,
Organometallics 2005, 24, 3104 – 3110; e) C. F. Bender, R. A.
Widenhoefer, J. Am. Chem. Soc. 2005, 127, 1070 – 1071.
[5] L. Fadini, A. Togni, Chem. Commun. 2003, 1, 30 – 31.
[6] a) J. Bodis, T. E. Müller, J. A. Lercher, Green Chem. 2003, 5,
227 – 231; b) V. Neff, T. E. Müller, J. A. Lercher, Chem.
Commun. 2002, 8, 906 – 907; c) T. E. Müller, A.-K. Pleier, J.
Chem. Soc. Dalton Trans. 1999, 4, 583 – 588.
[7] T. E. Müller, M. Grosche, E. Herdtweck, A.-K. Pleier, E. Walter,
Y.-K. Yan, Organometallics 2000, 19, 170 – 183.
[8] G. V. Shanbang, S. B. Halligudi, J. Mol. Catal. A 2004, 222, 223 –
228.
[9] J.-S. Herrmann, G. A. Luinstra, P. W. Roesky, J. Organomet.
Chem. 2004, 689, 2720 – 2725.
I: A solution of ZnMe2 (2.0m in toluene; 0.64 mL, 1.28 mmol,
1.05 equiv) was diluted in toluene (25 mL) and cooled to À788C. A
solution of {(iPr)2ATI}H (250 mg, 1.22 mmol) in toluene (25 mL) was
added. The reaction mixture was slowly warmed upto room
temperature, and gas was evolved for about 3 h. The solution was
then filtered off, the solvent was evaporated under reduced pressure.
The resulting yellow solid was washed with n-pentane (3 10 mL) and
dried under vacuum. Yield: 287 mg (83%). 1H NMR (C6D6,
400 MHz, 258C): d = 0.00 (s, 3H; ZnCH3), 1.14 (d, J = 6.1 Hz, 12H;
NCH(CH3)2), 3.76 (sept, J = 6.2 Hz, 2H; NCH(CH3)2), 6.35 (d, J =
9.4 Hz, 1H; HAr), 6.57 (d, J = 10.2 Hz, 2H; HAr), 6.95 ppm (dd, J =
9.4 Hz, 10.2 Hz, 2H; HAr); 13C{1H} NMR (C6D6, 100.4 MHz, 258C):
d = À9.9 (ZnCH3), 24.5 (NCH(CH3)2), 48.3 (NCH(CH3)2), 111.6
(CAr), 117.7 (CAr), 134.5 (CAr), 160.2 ppm (CAr); MS (EI): m/z (%):
282 (33) [M]+, 267 (51) [MÀCH3]+, 204 (24) [MÀZnCH3]+.
NMR-tube-scale intramolecular hydroamination: All NMR-
tube-scale reactions were prepared in an N2-filled glovebox. The
aminoalkynes (430 mmol) were dissolved in [D6]benzene (0.5 mL) and
then added to the catalyst (e.g. 4.30 mmol for 1 mol%). The mixture
was injected into an NMR tube, which was removed from the
glovebox and flame-sealed under vacuum. The reaction mixture was
then heated to the appropriate temperature for the stated duration of
[10] Single-crystal X-ray diffraction data for 1: C14H22N2Zn (Mr =
283.71): Bruker Smart 1000 CCD, space group P21/c (No. 14);
a = 1579(3), b = 906(2), c = 2176(4) pm, b = 109.40(4)8; T=
time. All products were analyzed by H, 13C, 13C DEPT, COSY, and
173 K, Z = 8, V= 2935(10) 106 pm3, 1 = 1.284 gcmÀ3, 2qmax
558, 16208 reflections collected, 6333 unique reflections (Rint
=
1
HMQC NMR spectroscopy and by IR, MS, and HRMS when
possible. The ratio between the reactant and the product was
calculated by comparison of the integrations of the corresponding
signals in the 1H NMR spectra. The concentration of the catalyst was
controlled by comparing the integration of a well-resolved signal for
the heterocyclic product with that for a signal for a catalyst ligand.
=
0.0593). The structure was solved by Patterson methods
(SHELXS-97 and SHELXL-97)[15] and refined by full-matrix
least-square techniques with I > 2s(I) to R1 = 0.0412 and wR2 =
0.1097. CCDC-274802 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
Received: June 10, 2005
[11] M. P. Coles, P. B. Hitchcock, Eur. J. Inorg. Chem. 2004, 13, 2662 –
2672.
Revised: August 17, 2005
Published online: November 4, 2005
[12] Recently
a copper mediated approach to 3,4-dihydro-2H-
benzoxazines was published. However the products were
obtained in moderate yields only: Y.-G. Zhou, P.-Y. Yang, X.-
W. Han, J. Org. Chem. 2005, 70, 1679 – 1683.
Keywords: cyclization · heterocycles · homogenous catalysis ·
hydroamination · zinc
.
[13] Activated olefins: A. Padwa, G. S. K. Wong, J. Org. Chem. 1986,
51, 3125 – 3133; non-activated olefins: E. C. Davison, I. T.
Forbes, A. B. Holmes, J. A. Warner, Tetrahedron 1996, 52,
11601 – 11624.
[14] a) R. M. Beesley, C. K. Ingold, J. F. Thorpe, J. Chem. Soc. 1915,
107, 1080 – 1106; b) C. K. Ingold, J. Chem. Soc. 1921, 119, 305 –
[1] For leading reviews, see: a) K. C. Hultzsch, Adv. Synth. Catal.
2005, 347, 367 – 391; b) S. Hong, T. J. Marks, Acc. Chem. Res.
2004, 37, 673 – 686; c) I. Bytschkov, S. Doye, Eur. J. Org. Chem.
2003, 935 – 946; d) F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32,
Angew. Chem. Int. Ed. 2005, 44, 7794 –7798ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7797